V !:‘-

¢ -

— .
e e
S

S

e

e

/7

il

b W <
N
. £ e,
= T I

-

-
-

21

(D

N
—C

#1

One-Slide Summary

e A type environment gives types for free
variables. You typecheck a let-body with an
environment that has been updated to
contain the new let-variable.

 If an object of type X could be used when
one of type Y is acceptable then we say X is
a subtype of Y, also written X <Y.

e A type system is sound if V E.
dynamic_type(E) < static_type(E)

#2

Lecture Outline
 Typing Rules o
e Typing Environments
o “Let” Rules
e Subtyping

e Wrong Rules

#3

Example: 1 + 2

- 1

: Int -2

Int

F1+2:Int

#4

THE BAS5 FROM ME T0O.

If we can g:ﬂ"rmi JF?TS GAUE HHE 1]
prove it, then 1 ""”‘i VS, HAND HERE.
eswet . Soundness gfggqgif %%\

e A type system is sound if [~ - momwes

FLOODS THE TARGET

- Whenever Fe: T / T
- Then e evaluates to a value 9 mmlmw
0 yp B SPEAKERS DOWN.
ﬁ MOW FLIP THAT
k RED SWITCH.

THOM
« We only want sound rules \\\
- But some sound rules are s |

worse than others: g,wmgg‘@ @ B
(i is an integer) %h""“ﬂh K m—.\

0 ﬂqi\ HORRIFYIG.
i : Object e & eBED

"MACARENAT

Type Checking Proofs

e Type checking proves facts likee : T
- One type rule is used for each kind of expression

 In the type rule used for a node e

- The hypotheses are the proofs of types of e’s
subexpressions

- The conclusion is the proof of type of e itself

#6

Rules for Constants

[Bool]
— false : Bool

[String]

(s 1s a string
constant)

s : String

#7

Rule for New

new T produces an object of type T
- lgnore SELF_TYPE for now . ..

[New]
FnewT: T

#8

Two More Rules

e : Bool
- not e : Bool

[Not]

- e, : Bool
Fe,: T

- while e, loop e, pool : Object

[Loop]

#9

Typing: Example
e Typing for while not false loop 1 + 2 * 3 pool

while loop pool

L

#10

Typing: Example
e Typing for while not false loop 1 + 2 * 3 pool

while loop pool

L

hot

|

false

#11

Typing: Example
e Typing for while not false loop 1 + 2 * 3 pool

while loop pool

L

hot

|

false : Bool

#12

Typing: Example
e Typing for while not false loop 1 + 2 * 3 pool

while loop pool

L

hot : Bool +

.

false : Bool

#13

Typing: Example
e Typing for while not false loop 1 + 2 * 3 pool

while loop pool

L

hot : Bool +

T

false : Bool 1

#14

Typing: Example
e Typing for while not false loop 1 + 2 * 3 pool

while loop pool

L

hot : Bool +

T

false : Bool 1 :Int

#15

Typing: Example
e Typing for while not false loop 1 + 2 * 3 pool

while loop pool

L

hot : Bool +

T

false : Bool 1:Int *
/\
2

#16

Typing: Example
e Typing for while not false loop 1 + 2 * 3 pool

while loop pool

L

hot : Bool +

T

false : Bool 1:Int *
/\
2 . Int

#17

Typing: Example
e Typing for while not false loop 1 + 2 * 3 pool

while loop pool

L

hot : Bool +

T

false : Bool 1:Int *
/\
2 . Int 3

#18

Typing: Example
e Typing for while not false loop 1 + 2 * 3 pool

while loop pool

L

hot : Bool +

T

false : Bool 1:Int *

/\
2 . Int 3+ Int

#19

Typing: Example
e Typing for while not false loop 1 + 2 * 3 pool

while loop pool

/\A
hot : Bool +
f{ -g| 1{f\;‘11"*
alse : Boo : In ,//f:>%<2i37\\\

2 . Int 3+ Int

#20

Typing: Example
e Typing for while not false loop 1 + 2 * 3 pool

while loop pool

L

hot : Bool + :Int

I

: Int
false : Bool 1 :Int *
%

2 . Int 3+ Int

#21

Typing: Example
e Typing for while not false loop 1 + 2 * 3 pool

while loop pool : Object

not : Bool + : Int

I

: Int
false : Bool 1 :Int *
%

2:Int 3:1Int

#22

Typing Derivations

e The typing reasoning can be expressed as a

tree:
F 2 :Int F 3 :Int

I false : Bool F1:Int F2*3:Int

I not false : Bool F1+2%*3:Int

I while not false loop 1 + 2 * 3 : Object
e The root of the tree is the whole
expression
e Each node is an instance of a typing rule
» Leaves are the rules with no hypotheses

#23

A Problem

 What is the type of a variable reference?

[Var] (X IS an
X :? identifier)

e The local structural rule does not carry
enough information to give x a type. Oh no!

#24

A Solution: Put more

information in the rules!

e A type environment gives types for free
variables

- A type environment is a mapping from
Object_ldentifiers to Types

- A variable is free in an expression if:

« The expression contains an occurrence of the variable
that refers to a declaration outside the expression

“ »

- in the expression “x”, the variable is free

€, ,9

- in “let x : Intin x + y” only “y” is free
-in “x + let x : Int in x + y” both “x”, “y” are free

#25

Type Environments

Let O be a function (or mapping) from
Object_ldentifiers to Types

The sentence OFe: T

is read: Under the assumption that variables
have the types given by O, it is provable that
the expression e has the type T

#26

Modified Rules

The type environment is added to the earlier
rules:

OFi:Int LInt] (11s an integer)

OF e, :Int
OFe,:Int

[Add]
OFe +e,:Int

#27

New Rules

And we can write new rules:

[Var] (O(x) =T)

OFx:T

Equivalently:

Ox)=T

[Var]
OFx:T

#28

O[T/x]F e, : T,

Let

OF let x:

- [Let-No-Init]
T,ine, : T,

O[T,/x] means “O modified to map x to T, and

behaving as
O

O

O on all other arguments”:
Ty/X] (X) =T,

To/x] (y) = O(y)

(You can write O[x/T,] on tests, etc.)
#29

Let Example

e Consider the Cool expression
letx: Tyin(lety: T,inE)+ (letx:T,inF)
(where E, and F,_ are some Cool expression

€, ,9

that contain occurrences of “x” and “y”)
e Scope
- of “y”isE
- of outer “x” is E,

- of inner “x” is F

e This is captured precisely in the typing rule.

#30

Example of Typing “let”

AST let x : T, in \
+
/\
Ie’ry:TIinJ let x : T, in
E,, |

#31

Example of Typing “let”

AST OF letx: T,in
Type env. l
+
Ie’ry:TIinJ let x: T, in

#32

Example of Typing “let”

AST OF letx: T,in
Type env. \ l
O[T,/x]F +
IeTy:TIinJ let x: T, in
E,, ‘L

#33

Example of Typing “let”

AST OF letx:T,in
Type env. \ l
O[T,/x]F +
O[Ty/x]F lety: T, inJ O[T,/x]t+ let x: T, in
E,, ‘L

#34

Example of Typing “let”

AST OFleTx:Toin\

Type env. \

O[T,/x]F +

.

O[Ty/x]F lety: T, inJ O[T,/x]t+ let x: T, in

(O[T/xDIT/yl- E

Y '

#35

Example of Typing “let”

AST OFleTx:Toin\

Type env. \

O[T,/x]F +

.

O[Ty/x]F lety: T, inJ O[T,/x]t+ let x: T, in

(O[To/x]?[-n/Y] = E

Y '

OIT/xDITAYIF X

#36

Example of Typing “let”

AST OFleTx:Toin\

Type env. \

O[T,/x]F +

.

O[Ty/x]F lety: T, inJ O[T,/x]t+ let x: T, in

N

(O[To/xDIT/YIE E,, \ |

(O[T/xD[T,/x]+ F;Iy

OIT/xDITAYIF X

#37

Example of Typing “let”

AST OF letx:T,in
Type env. \ l
Types O[T./X]F +
O[Ty/x]F lety: T, inJ O[T,/x]t+ let x: T, in

(OLT/XDITHIF E,, \ |

(O[T/xD[T,/x]+ F;Iy

L
,,,,,,
. .
e .

........

#38

Example of Typing “let”

AST OF letx:T,in
Type env. \ l
Types O[T./X]F +
O[Ty/x]F lety: T, inJ O[T,/x]t+ let x: T, in

(O[To/xDIT/yIF E,, :int \ |

(O[T/xD[T,/x]+ F;Iy

L
,,,,,,
. .
e .

........

#39

Example of Typing “let”

AST OF letx:T,in
Type env. \ l
Types OlTy/x]- +

.

O[Ty/x]F lety: T, inJ rint O[T,/x]Hlet x: T, in

. \
(O[To/x]}[Tl/y]l— E., ‘int |

(O[T/xD[T,/x]+ F;Iy

L
,,,,,,
. .
e .

........

#40

Example of Typing “let”

AST OF letx:T,in
Type env. \ l
Types OlTy/x]- +

.

O[Ty/x]F lety: T, inJ rint O[T,/x]Hlet x: T, in

N

\
(O[To/x]}[Tl/y]k E., ‘int |

(O[To/x]“)[TZ/x]F Fr\ :i[\’r

g3
o,
e,

.
...........
,,,,,,,
................

#41

Example of Typing “let”

AST OF letx:T,in
Type env. \ l
Types OlTy/x]F +

.

O[Ty/x]F lety: T, inJ int O[T,/x]Fletx: T,in; :int

N

\
(O[To/xDIT/yIF E,, :int |

(O[To/x]“)[TZ/x]F Fr\ :i[\’r

.
0
.

.
..........
"""""

.....

#42

Example of Typing “let”

AST OF letx:T,in
Type env. \ l
Types O[T/ + int

e T

O[Ty/x]F lety: T, inj int O[T,/x]Fletx: T,in; :int

N

\
(O[To/xDIT/yIF E,, :int |

(O[To/x]")[TZ/x]F Fr\ :i[\’r

.
0
.

.
..........
"""""

.....

#43

Example of Typing “let”

_':_ST OF letx:Tyin | :int
ype env. \
Types \‘ \

O[T,/x]F + Lint

e T

O[Ty/x]F lety: T, inj int O[T,/x]Fletx: T,in; :int

N

\
(O[To/xDIT/yIF E,, :int |

(O[To/x]")[TZ/x]F Fr\ :i[\’r

.
0
.

.
..........
"""""

.....

#44

Practice

e Consider 1 +letx:Intinx + 2
 What would the typing derivation be?

.

OF1+letx:Intinx+2:4 >

#45

Notes

e The type environment gives types to the free
identifiers in the current scope

e The type environment is passed down the
AST from the root towards the leaves

« Types are computed bottom-up on the AST
from the leaves toward the root

#46

Art History Trivia

(student “memorial”)

e The Periodo Azul refers to works produced by
this artist between 1901 and 1904. The works
place a heavy emphasis on shades of blue or
blue-green, with the artist sinking into

depression. While difficult to sell at the time,
the works are now quite popular. :

Cultural Food Trivia

(student “memorial”)

o Identify the culture or ethnicity
associated with the following foods:

- Latkes (potato pancakes)

- Poutine (fries with curds and gravy)

- Bubble tea (tapioca, fruit, tea)

- Sosatie (lamb or mutton on skewers
with spicy sauce)

History and Geography Trivia

(student “memorial”)

e The June 11, 1775 Battle of Machias in
this state was the first naval battle of
the American Revolutionary War. After

d Lexington (April 19), the

Concord an

Machias townspeople arrested a

British loya

ships to sail

British sloo

ist and used two local
out and capture the

town woulc

D HMS Margaretta. The (3
see another naval Bl o

battle in 1777.

Mythology Trivia

(student “memorial”
e In Norse Mythology, | F
these three giant [
maidens spin the
threads of fate at

Yggdrasil,
determining the
future of each
newborn.

Real-World Languages

e This Indo-European language is spoken by
about 100 million people (it's the most
common first language in the EU). It uses
an extended Latin alphabet, inflects nouns

into cases (nominative, genitive, dative
and accusative), and features three
genders. Verb and noun inflection allow for
a flexible word order. Nobel Prize winner
Hermann Hesse wrote in this language.

Let with Initialization

Now consider let with initialization:

OFe,: T,
O[T,/x] e, : T

: [Let-Init]
OFletx: T,«e;ine, : T,

,;N
s f‘ﬂ

This rule is weak. Why? :

Ao
Wl
\f

#52

Let with Initialization

e Consider the example:

class C inherits P { ... }

letx : P+~ new Cin....

e The previous let rule does not allow this
code

- We say that the rule is too weak or incomplete

#53

Subtyping

o Define a relation X <Y on classes to say
that:

- An object of type X could be used when one of
type Y is acceptable, or equivalently

- X conforms with Y
- In Cool this means that X is a subclass of Y

o Define a relation < on classes
X<X
X <Y if X inherits from Y
X<ZifX<YandY <Z

#54

Let With Initialization (Better)

OFe,: T
T<T,
O[T,/x] e, :T,

. [Let-Init]
OFletx: T, e,ine, : T,

e Both rules for let are sound

e But more programs type check with this
new rule (it is more complete)

#55

Type System Tug-of-War

e There is a tension between
- Flexible rules that do not constrain programming

- Restrictive rules that ensure safety of execution

#56

Expressiveness
of Static Type Systems

o A static type system enables a compiler to
detect many common programming errors

e The cost is that some correct programs are
disallowed
- Some argue for dynamic type checking instead

- Others argue for more expressive static type
checking

e But more expressive type systems are also
more complex

#57

Dynamic And Static Types

 The dynamic type of an object is the class C
that is used in the “new C” expression that
creates the object

- A run-time notion

- Even languages that are not statically typed have
the notion of dynamic type

e The static type of an expression is a notation
that captures all possible dynamic types the
expression could take

- A compile-time notion
#58

Dynamic and Static Types. (Cont.)

e In early type systems the set of static types
correspond directly with the dynamic types

» Soundness theorem: for all expressions E
dynamic_type(E) = static_type(E)
(in all executions, E evaluates to values of the
type inferred by the compiler)

e This gets more complicated in advanced type
systems (e.g., Java, Cool)

#59

Dynamic and Static Types in COOL

classA{ .. }
class B inherits A {...}

class Main { Here, x’s value has

A X <« new A:— -
x has static __— ! dynamic type A
type A -

X < new B; «__ Here, x’s value has
dynamic type B

« A variable of static type A can hold values of
static type B, if B < A

#60

Dynamic and Static Types

Soundness theorem for the Cool type system:
V E. dynamic_type(E) < static_type(E)

Why is this Ok?
- For E, compiler uses static_type(E)

- All operations that can be used on an object of type
C can also be used on an object of type C’ < C
« Such as fetching the value of an attribute
« Or invoking a method on the object

- Subclasses can only add attributes or methods
- Methods can be redefined but with the same types!

#61

Subtyping Example

o Consider the following Cool class definitions

ClassA{a():int{0};}
Class B inherits A{b() :int{1};}

e An instance of B has methods “a” and “b”

e An instance of A has method “a”

- A type error occurs if we try to invoke method
“b” on an instance of A

#62

Example of Wrong Let Rule (1)

e Now consider a hypothetical wrong let rule:
OFe,: T T<T, Ole T,

OFletx: T, e,ine, : T,

e How is it different from the correct rule7

/
U; db/

The more biotech science you know, the
less you fear GMO crops, study finds |
Genetic Literacy Project

Psychology

23 ell20 - 3h

The more you understand science, the less you're afraid of
the products of science. Who knew.

4 12k ¥ “ Reply
@ DeathLeopard * 2h

With computer software it's the other way around.
4+ 509 ¥ ho/

#63

Example of Wrong Let Rule (1)

e Now consider a hypothetical wrong let rule:
OFe,: T T<T, Ole T,
OFletx: T, e,ine, : T,

e How is it different from the correct rule?
- The following good program does not
typecheck:

letx:Int«— Oinx + 1

Why?

#64

Example of Wrong Let Rule (2)

e Now consider a hypothetical wrong let rule:
OFe,: T T,<T O[T,/x]Fe,:T,
OFletx: T, e,ine, : T,

« How is it different from the correct rule?

#65

Example of Wrong Let Rule (2)

e Now consider a hypothetical wrong let rule:
OFe,: T T,<T O[T,/x]Fe,:T,
OFletx: T, e,ine, : T,

« How is it different from the correct rule?

- The following bad program is well typed:
let x : B+ new A in x.b()

- Why is this program bad?

#66

Example of Wrong Let Rule (3)

e Now consider a hypothetical wrong let rule:
OFe,: T TLT, O[T/x]e,: T,
OFletx: T,«~ e,ine, : T,

e How is it different from the correct rule?

E 3

8 X
THE SECRET TO 5 THEN IT'S EASY 2
HAVING A REWARDING |2] TO KEEP THINGS] v o s g
WORK-LIFE BALANCE |©| BALANCED BY DOING | 50 GENTUS HIDING
IS TO HAVE NO LIFE. | NO WORK. v - INPLAIN
8 £ SIGHT.
= L (
A PE .
¢ L) 5| g% | =3
- [l =T p \
| & X 467

Example of Wrong Let Rule (3)

e Now consider a hypothetical wrong let rule:
OFe,: T TLT, O[T/xX]e,: T,
OFletx: T« e,ine, : T,

« How is it different from the correct rule?

- The following good program is not well
typed

let x : A« newBin {.. Xx + new A; x.a(); }
- Why is this program not well typed?

#68

Typing Rule Notation

The typing rules use very concise notation
They are very carefully constructed

Virtually any change in a rule either:

- Makes the type system unsound
(bad programs are accepted as well typed)

- Or, makes the type system less usable (incomplete)
(good programs are rejected)

But some good programs will be rejected anyway
- The notion of a good program is undecidable

#69

Next Time

« Type checking method dispatch

« Type checking with SELF_TYPE in COOL

#70

Homework

e PA4c “Recommended”
- Actually due next Tuesday

#71

	Type Checking
	One-Slide Summary
	Lecture Outline
	Example: 1 + 2
	Soundness
	Type Checking Proofs
	Rules for Constants
	Rule for New
	Two More Rules
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Typing Derivations
	A Problem
	A Solution: Put more information in the rules!
	Type Environments
	Modified Rules
	New Rules
	Let
	Let Example
	Let. Example.
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Notes
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Let with Initialization
	Slide 53
	Subtyping
	Let With Initialization (Better)
	Type System Tug-of-War
	Expressiveness of Static Type Systems
	Dynamic And Static Types
	Dynamic and Static Types. (Cont.)
	Dynamic and Static Types in COOL
	Dynamic and Static Types
	Subtyping Example
	Example of Wrong Let Rule (1)
	Slide 64
	Slide 65
	Example of Wrong Let Rule (2)
	Example of Wrong Let Rule (3)
	Slide 68
	Typing Rule Notation
	Next Time (Post-Midterm)
	Homework

