
#1

Profilers and DebuggersProfilers and Debuggers

#2

Introductory Material

• First, who doesn’t feel comfortable with
assembly language?
– This is a great opportunity to practice!

• Lecture Style:
– “Sit on the table” and pose questions.

• Lecture Goal:
– After the lecture you’ll think, “Wow, that was all

reasonable in retrospect. With a bit of time, I
could have come up with those techniques.”

#3

One-Slide Summary
• A debugger helps to detect the source of a

program error by single-stepping through
the program and inspecting variable values.

• Breakpoints are the fundamental building
block of debuggers. Breakpoints can be
implemented with signals and special OS
support.

• A profiler is a performance analysis tool that
measures the frequency and duration of
function calls as a program runs.

• Profilers can be event- or sampling-based.

#4

Lecture Outline

• Debugging
– Signals

– How Debuggers Works

– Breakpoints

– Advanced Tools

• Profiling
– Event-based

– Statistical

#5

What is a Debugger?

“A software tool that is used to detect the
source of program or script errors, by
performing step-by-step execution of
application code and viewing the content
of code variables.”

-Microsoft Developer Network

#6

Machine-Language Debugger

• Only concerned with assembly code
• Show instructions via disassembly
• Inspect the values of registers, memory
• Key Features (we’ll explain all of them)

– Attach to process

– Single-stepping

– Breakpoints

– Conditional Breakpoints

– Watchpoints

#7

Signals
• A signal is an asynchronous notification sent

to a process about an event:
– User pressed Ctrl-C (or did kill %pid)

• Or asked the Windows Task Manager to terminate it

– Exceptions (divide by zero, null pointer)

– From the OS (SIGPIPE)

• Programs can use signal handlers – code that
will be executed when the signal occurs.
– Signal handlers are vulnerable to race conditions.

(2+ threads access same variable, 1+ writes to it)

#8

Signal Example
#include <stdio.h>
#include <signal.h>

int global = 11;

int my_handler() {
 printf("In signal handler, global = %d\n",

global);
 exit(1);
}

void main() {
 int * pointer = NULL;

 signal(SIGSEGV, my_handler) ;

 global = 33;

 * pointer = 0;

 global = 55;

 printf("Outside, global = %d\n", global);
}

• What might this
program print?

#9

Attaching A Debugger

• Requires operating system support
• There is a special system call that allows

one process to act as a debugger for a target
– system call = user program requests a service

from the OS

– Security: when can you debug process XYZ?

• Once this is done, the debugger can basically
“catch signals” delivered to the target
– This isn’t exactly what happens, but it’s a good

explanation …

#10

Building a Debugger
#include <stdio.h>
#include <signal.h>

#define BREAKPOINT *(0)=0

int global = 11;

int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}

void main() {
 signal(SIGSEGV, debugger_signal_handler) ;

 global = 33;

 BREAKPOINT;

 global = 55;

 printf("Outside, global = %d\n", global);
}

• We can then get
breakpoints and
interactive
debugging
– Attach to target
– Set up signal

handler
– Add in exception-

causing
instructions

– Inspect globals,
etc.

#11

Reality
• We’re not really changing the

source code

• Instead, we modify the
assembly

• We can’t insert instructions
– Because labels are already set

at known constant offsets

• Instead we change them

 .file "example.c"
.globl _global
 .data
 .align 4
_global:
 .long 11
 .def ___main
 .section .rdata,"dr"
LC0:
 .ascii "Outside, global = %d\12\0"
 .text
.globl _main
 .def _main
_main:
 pushl %ebp
 movl %esp, %ebp
 subl $24, %esp
 andl $-16, %esp
 movl $0, %eax
 addl $15, %eax
 addl $15, %eax
 shrl $4, %eax
 sall $4, %eax
 movl %eax, -4(%ebp)
 movl -4(%ebp), %eax
 call __alloca
 call ___main
 movl $33, _global
 movl $55, _global
 movl _global, %eax
 movl %eax, 4(%esp)
 movl $LC0, (%esp)
 call _printf
 leave
 ret
 .def _printf

One of the class goals
is to expose you to

new languages:
thus x86 ASM instead

of COOL-ASM.

#12

Adding A
Breakpoint

Add a
breakpoint
just after
“global =
33;”

 .file "example.c"
.globl _global
 .data
 .align 4
_global:
 .long 11
 .def ___main
 .section .rdata,"dr"
LC0:
 .ascii "Outside, global = %d\12\0"
 .text
.globl _main
 .def _main
_main:
 pushl %ebp
 movl %esp, %ebp
 subl $24, %esp
 andl $-16, %esp
 movl $0, %eax
 addl $15, %eax
 addl $15, %eax
 shrl $4, %eax
 sall $4, %eax
 movl %eax, -4(%ebp)
 movl -4(%ebp), %eax
 call __alloca
 call ___main
 movl $33, _global
 movl $55, _global
 movl _global, %eax
 movl %eax, 4(%esp)
 movl $LC0, (%esp)
 call _printf
 leave
 ret
 .def _printf

 .file "example.c"
.globl _global
 .data
 .align 4
_global:
 .long 11
 .def ___main
 .section .rdata,"dr"
LC0:
 .ascii "Outside, global = %d\12\0"
 .text
.globl _main
 .def _main
_main:
 pushl %ebp
 movl %esp, %ebp
 subl $24, %esp
 andl $-16, %esp
 movl $0, %eax
 addl $15, %eax
 addl $15, %eax
 shrl $4, %eax
 sall $4, %eax
 movl %eax, -4(%ebp)
 movl -4(%ebp), %eax
 call __alloca
 call ___main
 movl $33, _global
 movl $0, 0
 movl _global, %eax
 movl %eax, 4(%esp)
 movl $LC0, (%esp)
 call _printf
 leave
 ret
 .def _printf

Storage Cell:

movl $55, _global

_main + 14

#13

Software Breakpoint Recipe

• Debugger has already attached and set up its
signal handler

• User wants a breakpoint at instruction X
• Store (X, old_instruction_at_X)
• Replace instruction at X with “*0=0”

– Pick something illegal that’s 1 byte long

• Signal handler replaces instruction at X with
stored old_instruction_at_X

• Give user interactive debugging prompt

#14

Advanced Breakpoints
• Get register and local values by walking the stack
• Optimization: hardware breakpoints

– Special register: if program counter value = hardware
breakpoint register value, signal an exception

– Faster than software, works on embedded system ROMs,
only limited number of breakpoints, etc.

• Feature: condition breakpoint: “break at
instruction X if some_variable = some_value”

• As before, but signal handler checks to see if
some_variable = some_value
– If so, present interactive debugging prompt
– If not, return to program immediately
– Is this fast or slow?

#15

Single-Stepping

• Debuggers allow you to advance through
code on instruction at a time

• To implement this, put a breakpoint at the
first instruction (= at program start)

• The “single step” or “next” interactive
command is equal to:
– Put a breakpoint at the next instruction

• +1 for COOL-ASM, +4 bytes for RISC, +X bytes for CISC,
etc.

– Resume execution

#17

Watchpoint Implementation

• Software Watchpoints
– Put a breakpoint at every instruction (ouch!)

– Check the current value of L against a stored
value

– If different, give interactive debugging prompt

– If not, set next breakpoint and continue (i.e.,
single-step)

• Hardware Watchpoints
– Special register holds L: if the value at address L

ever changes, the CPU raises an exception

Q: Advertising (799 / 842)

•Name the brand most associated
with instant-print self-
developing photographic film
and cameras. The technology
was invented in 1947 by
corporation founder Edwin H.
Land.

Social Media

•Name the social media platform
most associated with memes
about:
– color vision of shrimp
–Apollo's dodgeball
–Goncharov
– Spiders Georg

Video Game History
(student “memorial”)

• This 1979-1980 Atari 2600 video game introduced the first widely-known
Easter egg. Atari did not allow game designers or programmers to credit
themselves in any way (games were marketed and branded as produced
by Atari overall). Warren Robinett included a secret room crediting
himself as the designer. When a 15-year-old from Utah discovered it and
wrote to Atari for an explanation, they tasked Brad Stewart with fixing
it, but he said he would only change it to “Fixed by Brad Stewart”. Atari
decided to leave it in game, dubbing such hidden features Easter eggs
and saying they would include more in the future. The game itself
involves carrying items around three castles to defeat three dragons.

Real-World Languages
• This Northern European language boasts

5.8 million speakers (including Linux
author Linus Torvalds). Its original
writing system was devised in the 16th
century from Swedish, German and
Latin. Its eight vowels have powerful
lexical and grammatical roles; doubled
vowels do not become dipthongs.

– Example: Hyvää päivää!

#23

Source-Level Debugging

• What if we want to …
– Put a breakpoint at a source-level location (e.g.,

breakpoint at main.c line 20)

– Single-step through source-level instructions
(e.g., from main.c:20 to main.c:21)

– Inspect source-level variables (e.g., inspect
local_var, not register AX)

• We’ll need the compiler’s help
• How can we do it?

#24

Debugging Information
• The compiler will emit tables

– For every line in the program (e.g., main.c:20), what
assembly instruction range does it map to?

– For every line in the program, what variables are in
scope and where do they live (registers, memory)?

• Put a breakpoint = table lookup
– Put breakpoint at beginning of instruction range

• Single-step = table lookup
– Put next breakpoint at end of instruction range +1

• Inspect value = table lookup

• Where do we put these tables?

These tables are
conceptually similar

to the class map
or annotated AST.

#25

How Big Are Those Tables?
/* example.c */
#include <stdio.h>
#include <signal.h>

int my_global_var = 11;

void main() {

 int my_local_var = 22;

 my_local_var += my_global_var;

 printf("Outside, my_local_var = %d\n", my_local_var);
}

“gcc example.c” 9418 bytes
“gcc –g example.c” 23790 bytes

#26

Debugging vs. Optimizing

• We said: the compiler will emit tables
– For every line in the program (e.g., main.c:20),

what assembly instruction range does it map to?

– For every line in the program, what variables are
in scope and where do they live (registers,
memory)?

• What can go wrong if we optimize the
program?

#27

Replay Debugging
• Running and single-stepping are handy
• But wouldn’t it be nice to go back in time?
• That is, from the current breakpoint, undo

instructions in reverse order
• Intuition: functional + single assignment

x = 11; let x0 = 11 in

x = x + 22; let x1 = x0 + 22 in

breakpoint ; breakpoint ;
x = x + 33; let x2 = x1 + 33 in

print x print x

#28

Time Travel
• Store the state at various times

– time t=0 at program start
– time t=88 after 88 instructions
– … why does this work?

• When the user asks you to go back one step,
you actually go back to the last stored state
and run the program forward again with a
breakpoint
– e.g., to go back from t=150, put breakpoint at

instruction 149 and re-run from t=88’s state

• ocamldebug has this power, but also …

#30

Valgrind
• Valgrind is a suite of free tools for

debugging and profiling
– Finds memory errors, profiles cache

times, call graphs, profiles heap space

• It does so via dynamic binary
translation
– Fancy words for “it is an interpreter”
– No need to modify, recompile or relink
– Works with any language

• Can attach gdb to your process, etc.
• Problem: slowdown of 5x-100x

#31

Profiling

• A profiler is a performance analysis tool that
measures the frequency and duration of
function calls as a program runs.

• Flat profile
– Computes the average call times for functions

but does not break times down based on context

• Call-Graph profile
– Computes call times for functions and also the

call-chains involved

#32

Event-Based Profiling

• Interpreted languages provide special hooks for
profiling
– Java: JVM-Profile Interface, JVM API
– Python: sys.set_profile() module
– Ruby: profile.rb, etc.

• You register a function that will get called
whenever the target program calls a method, loads
a class, allocates an object, etc.
– You could do this for PA5: count the number of

object allocations, etc.
– You are doing this for PA5: “stack overflow”

#33

JVM Profiling Interface
• VM notifies profiler agent of various events

(heap allocation, thread start, method
invocation, etc.)

• Profiler agent issues control commands to
the JVM and communicates with a GUI

#34

Statistical Profiling

• You can arrange for the operating system to
send you a signal (just like before) every X
seconds (see alarm(2))

• In the signal handler you determine the
value of the target program counter
– And append it to a growing list file
– This is called sampling

• Later, you use that debug information table
to map the PC values to procedure names
– Sum up to get amount of time in each procedure

#35

Sampling Analysis
• Advantages

– Simple and cheap – the instrumentation is
unlikely to disturb the program too much

– No big slowdown

• Disadvantages
– Can completely miss periodic behavior (e.g., you

sample every k seconds but do a network send at
times 0.5 + nk seconds)

– High error rate: if a value is n times the sampling
period, the expected error in it is sqrt(n)
sampling periods

• Read the gprof paper for midterm2

#36

While Derivation On The Board?

• If we have time, let's do this together ...
• E = [x → a]
• S = [a → 0]
• S' = [a → 1]

while x < 1 loop x <- x + 1 pool

#37

Homework
• Midterm 2 – End of Next Week

– Covers Lectures “Code Generation” to “Language
Security” (i.e., everything after Midterm 1) and
PAs done during that time

– Everything after parsing is in scope

– Review sets and prior exams are available to
help structure your studying

– Format and logistics match Midterm 1

	Profilers and Debuggers
	Introductory Material
	One-Slide Summary
	Lecture Outline
	What is a Debugger?
	Machine-Language Debugger
	Signals
	Signal Example
	Attaching A Debugger
	Building a Debugger
	Reality
	Adding A Breakpoint
	Software Breakpoint Recipe
	Advanced Breakpoints
	Single-Stepping
	Watchpoints
	Watchpoint Implementation
	Q: Advertising (799 / 842)
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Source-Level Debugging
	Debugging Information
	How Big Are Those Tables?
	Debugging vs. Optimizing
	Replay Debugging
	Time Travel
	Slide 29
	Valgrind
	Profiling
	Event-Based Profiling
	JVM Profiling Interface
	Statistical Profiling
	Sampling Analysis
	Slide 36
	Homework

