Cool Type Checking
Cool Run-Time Organization
7 B :

Feeling a little cold? Just put these two lines into any
Xcode project and your Mac will heat up your room in no
time thanks to Swift maxing out the CPU.

Traduci il Tweet

10:10 PM - 29 mar 2019 - Twitter Web App

#1

One-Slide Summary

« We will use SELF_TYPE, for “C or any

subtype of C”. It shows off the subtlety of
our type system and allows us to check
methods that return self objects.

e The lifetime of an activation of (i.e., a call
to) procedure P is all the steps to execute P
plus all the steps in procedures that P calls.

e Lifetime is a run-time (dynamic) notion; we
can model it with trees or stacks.

#2

Lecture Outline

e SELF TYPE
e Object Lifetime
e Activation Records

e Stack Frames

SELF_TYPE Dynamic Dispatch

e If the return type of the method is
SELF_TYPE then the type of the dispatch is
the type of the dispatch expression:

OMChLe,: T, rA

B
OMChre :T. }
M(T,, f) = (T,,...,T.", SELF_TYPE) €

T<T/' 1<i<n P
O,M,CtH e,.f(e,...,e.) : T,

#4

Where is SELF TYPE
lllegal in COOL?

mx:T): T {..}
e Only T’ can be SELF_TYPE! Not T.

What could go wrong if T were SELF_TYPE?

class A { comp(x : SELF_TYPE) : Bool {...}; };
class B inherits A {

b() :int { ..} 4
comp(y : SELF_TYPE) : Bool { ... y.b() ...}; };

let X : A<« new Bin .. x.comp(new A); ...

o ox b

#5

Summary of SELF_TYPE

e The extended < and lub operations do a lot

of the work. Implement them to handle
SELF_TYPE

e SELF_TYPE can be used only in a few places.
Be sure it isn’t used anywhere else.

e A use of SELF_TYPE always refers to any
subtype in the current class

- The exception is the type checking of dispatch,
where SELF_TYPE as the return type of an
invoked method might have nothing to do with

the current enclosing class
#6

Course Goals

o At the end of this course, you will be
acquainted with the fundamental concepts in
the design and implementation of high-level
programming languages. In particular, you
will understand the theory and practice of
lexing, parsing, semantic analysis, and code
interpretation. You will also have gained
practical experience programming in multiple
different languages.

#7

Group Activity

The following typing judgments have one or more flaws. For each judgment, list
the flaws and explain how they affect the judgment.

(a)
OkFey:T

OFT<T,
OFe :T)

Olx/To| Fletz: Ty < eginey : T

(let — init)

(b)
O(id) =Ty
OFe T
Ip < T,
OFid ¢ : T,

(assign)

#8

Status

« We have covered the front-end phases
- Lexical analysis
- Parsing
- Semantic analysis
e Next are the back-end phases
- Optimization (optional)
- Code execution (or code generation)

e We’ll do code execution first . . .

#9

Run-time environments

e Before discussing code execution, we need
to understand what we are trying to execute

e There are a number of standard techniques
that are widely used for structuring
executable code

e Standard Way:
- Code
- Stack
- Heap

Run-Time Organization Outline

« Management of run-time resources

e Correspondence between static (compile-
time) and dynamic (run-time) structures

e Storage organization

#11

Run-time Resources

e Execution of a program is initially under the
control of the operating system

« When a program is invoked:
- The OS allocates space for the program
- The code is loaded into part of the space
- The OS jumps to the entry point (i.e., “main”)

e How does “space” work?

#12

Spac sf”

Space is big. Really 1)' You ufs\t on't believe
how vastly, hugely, rrﬂf]cmow g big it is. |
mean, you may il itsssa IGHEREY down the
road to the chémisg#s \! Jur/ﬁ‘{b Pjust peanuts
to space. /\3 . ouglas Adams
Space is as inffigitegWe can imagine, and
expandmg th1s gE¥spective is what adjusts
oz <ine’s foelis o) r"onqllermv OUIIUIE
arierries,; ne forrnidanle foes: jgnorance arid

Imitation: -- Vanna bonta

(OS/Arch Info) Virtual Memory

« An address space is a partial mapping from
addresses to values. Like a big array: the value at

memory address 0x12340000 might be 87. Partial
means some addresses may be invalid.

o There is an address space associated with the

physical memory in your computer. If you have 1GB
of RAM, addresses 0 to 0x40000000 are valid.

« If | want to store some information on MachineX and
you want to store other information on MachineX,
we would have to collude to use different physical

addresses (= different parts of the address space).
#14

(OS/Arch Info) Virtual Memory 2

o Virtual memory is an abstraction in which each process
gets its own virtual address space. The OS and hardware
work together to provide this abstraction. All modern
general computers use it.

« Each virtual address space is then mapped separately
into a different part of physical memory. implification)

e So Process1 can store information at its virtual address
0x4444 and Process? can also store information at its
virtual address 0x4444 and there will be no overlap in
physical memory.

- e.g., P10x4444 virtual -> 0x1000 physical
- and P2 0x4444 virtual -> 0x8000 physical

#15

Program Memory Layout

Memory

Code

Other Space

Low Addresses
0x00000000

High Addresses
0x40000000

#16

Notes

e Our pictures of machine organization have:

- Low address at the top

- High address at the bottom

- Lines delimiting areas for different kinds of data

e These pictures are simplifications
- e.g., not all memory need be contiguous

e In some textbooks lower addresses are at
bottom (doesn't matter)

#17

Monitor Edit View Help

|
System | Processes |Resources File Systems

Load averages for the last 1, 5, 15 minutes: 2.25, 1.00, 0.59

ss Name Status % CPU Nice D Memory v
et skype Sleeping 0 0 5372 17179869180.0 GiB
nautilus Sleeping 0 0 5288 17179869180.0 GiB
. gnome-session Sleeping 0 0 5240 17179869180.0 GiB
pidgin Sleeping 0 0 5357 17179869180.0 GiB
gnome-terminal Sleeping 0 0 9265 17179869180.0 GiB
multiload-applet-2 Sleeping 0 0 5320 17179869180.0 GiB
gnome-panel Sleeping 0 0 5284 17179869180.0 GiB
gnome-system-monitor Running S 0 10250 17179869180.0 GiB
java Sleeping 42 0 10234 17179869180.0 GiB
firefox-bin Sleeping 0 0 5394 17179869180.0 GiB
gnome-settings-daemor Sleeping 0 0 5267 7.3KiB
npviewer.bin Sleeping 0 0 5429 984 bytes
— fusion-icon Sleeping 0 0 5326 960 bytes
. e r p a C e — a a p a C e mixer_applet2 Sleeping 0 0 5322 960 bytes
eclipse Sleeping 0 0 10233 168 bytes
sh Sleeping 0 0 10232 0 bytes
bash Sleeping 0 0 9470 0 bytes
gnome-pty-helper Sleeping 0 0 9268 0 bytes |

<

e A compiler is responsible for:
- Generating code (that is run later)
- Orchestrating use of the data area

e An interpreter is responsible for:
- Executing the code directly (now
- Orchestrating use of the (run-time) data

#18

Code Execution Goals

e Two goals:
- Correctness
- Speed

e Most
complications at
this stage come |
from trying to be | =
fastaswellas @&
correct

Assumptions about Execution

e (1) Execution is sequential; control moves
from one point in a program to another in a
well-defined order

 (2) When a procedure is called, control
eventually returns to the point immediately

after the call

Do these assumptions always hold?

#20

Activations

e An invocation of procedure P is an activation
of P
e The lifetime of an activation of P is
- All the steps to execute P
- Including all the steps in procedures that P calls

=4 Dlamnminnm E=:

Exact Globe 2003 Enterprise (] i

this function leave?

-

.................

[T nolonger ask

.................

#21

Lifetimes of Variables

e The lifetime of a variable x is the portion of
execution during which x is defined

e Note that
- Scope is a static concept
- Lifetime is a dynamic (run-time) concept

A FIVE-YEAR PLAN A
YEAR PLAM LOOKS HAVE
LJHEN YOU DONT ‘ \
LIKE THIS. THIS | Bap |
KMNOW WHAT WILL
HAPPEN TN ROOM | TIMING. |
EN IN FIVE NOW. | SHOO

MINUTES?

. SHOO! J

_——h -

\

H] PLAN

|||||

T@0F o008 5cot Adamas, Inc./Dist. by UFS, Inc.
I

" werw dilbert.com scottadama® ol com

Activation Trees
o Assumption (2) requires that when P calls Q,
then Q returns before P does

 Lifetimes of procedure activations are
properly nested

e Activation lifetimes can be depicted as a
tree

Example
Class Main {
g(): Int {13; Man
f(): Int {g()3}; g'/\‘f
main(): Int {{ g(); f(); 3}
| \

#24

Example 2

Class Main {
g():Int {1}
f(x:Int): Int{
if Xx =0 then g() else f(x - 1) fi
I3
main(): Int {{ f(3); }};
}

What is the activation tree for this example?

#25

Notes

e The activation tree depends on run-time
behavior

e The activation tree may be different for
every program input

e Since activations are properly nested, a
stack can track currently active procedures

- This is the call stack

#26

Example

Class Main {
g(): Int {1}
f(): Int{g() };
main(): Int {{ g(); f(); 13;

} Main Stack

Main

#27

Example

Class Main {
g() : Int {1}
f(): Int{g() };
main(): Int {{ g(); f(); 33;

} Main Stack

L
9 Main

#28

Example

Class Main {
g(): Int {1}
f(): Int{g() }
main(): Int {{ g(); 1(); 13;

} Main Stack

/\
9 £ Main

#29

Example

Class Main {
g() : Int {13}
f(): Int{g0() };
main(): Int {{ g(); 1(); 13;

} Main Stack
/\
9 £ Main
| f
g

#30

Revised Memory Layout

Low Address
Code

Memory

High Address

#31

Trivia: Slavic Folklore

(student “memorial”)
e This old woman flies on a
mortar, wields a pestle,
and lives in the forest in a
hut supported by chicken
legs. She may eat children

or help the hero. In the
John Wick film series, her
name is associated with
the main character.

bata-flra

Q: TV (110 / 842)

e Name the series and either of
the characters involved in the
first interracial kiss on US

television. The kiss took place in
the 1968 episode "Plato’s
Stepchildren”.

Trivia: Yu-Gi-Oh

(student “memorial”)

 In Yu-Gi-Oh, Yugi Moto is aided by the
spirit of an ancient what as he plays
Shadow Games and seeks Millenium
ltems? In the story, who invented the

Duel Monsters card game?

e YTAS Bonus: Pithily explain Seto
Kaiba's perspective on how wealth
frees one from traditional strictures.

Real-World Languages

e This Asian language features a
relatively small vocabulary of
sounds, a focus on the relative

status of the speaker and listener
in the conversation, three
written scripts, and 5-O-V

ordering. Ex: HARIZITET=LY,

Real-World Languages

e This Southern Athabaskan language
is the most commonly-spoken Native
(Indigenous) American language
north of Mexico. It has four basic

vowels, two tones, inflected verbs,
and was used as encryption to relay
tactical secret messages in World

War |l.

Activation Records

« On many machines the stack starts at high-
addresses and grows towards lower
addresses

e The information needed to manage one
procedure activation is called an activation
record (AR) or frame

o If procedure F calls G, then G’s activation
record contains a mix of info about F and G.

#37

What is in G’s AR when F calls G?

e Fis “suspended” until G completes, at which
point F resumes. G’s AR contains
information needed to resume execution of
F.

e G’s AR may also contain:
- Actual parameters to G (supplied by F)
- G’s return value (needed by F)
- Space for G’s local variables

#38

The Contents of a
Typical AR for G

e Space for G’s return value
o Actual parameters

e Pointer to the previous activation record
- The control link points to AR of F (caller of G)
- (possibly also called the frame pointer)

e Machine status prior to calling G
- Local variables
- (Compiler: register & program counter contents)

e Other temporary values

#39

Example 2, Revisited

Class Main {
g():Int {1}
f(x:Int):Int {
if x=0 then g() else f(x - 1) (**) fi

};
main(): Int {{f(3); (*) ¥};} return address
control link

AR for f: argument
space for
result

#40

Stack After Two Calls to f

Class Main {
g():Int {1} (")

f(x:Int):Int { £ < —
if x=0 then g() 2]
else f(x - 1) (**) fi | result 1

() Stack

& -
main(): Int {{f(3); (*) }}; f < 3 >

} _ | result

#41

Notes

e main has no argument or local variables and
its result is “never” used; its AR is
uninteresting

e (*) and (**) are return addresses of the
invocations of f

- The return address is where execution resumes
after a procedure call finishes

e This is only one of many possible AR designs
- Would also work for C, Pascal, FORTRAN, etc.

#42

The Main Point

The compiler must determine, at compile-
time, the layout of activation records and
generate code that, when executed at run-
time, correctly accesses locations in those

activation records.

Thus, the AR layout and the compiler
must be designed together!

#43

Discussion

o The advantage of placing the return value 1st in a
frame is that the caller can find it at a fixed offset
from its own frame

- The caller must write the return address there

o There is nothing magic about this organization
- Can rearrange order of frame elements
- Can divide caller/callee responsibilities differently

- An organization is better if it improves execution speed
or simplifies code generation

o Ask me about what embedded devices do.
#44

Discussion (Cont.)

e Real compilers hold as much of the frame as
possible in registers

- Especially the method result and arguments

e Why?
BECAUSE ITS COLD, ICE WANTS | 1S THAT | Look
TO GET WARM, SO IT @ES | TRUE?) F
To THE TOP OF LIQUIDS IN
= R0k To B NERERTO |

T UP AND
IND OUT.
L
\ ”

Globals

e All references to a global variable point to
the same object

- Can’t really store a global in an activation record

e Globals are assigned a fixed address once

- Variables with fixed address are “statically
allocated”

e Depending on the language, there may be
other statically allocated values

#46

Memory Layout with Static Data

Low Address
Code

Memory Static Data

High Address

#47

Heap Storage

e A value that outlives the procedure that
creates it cannot be kept in the AR

method foo() { new Bar }
The Bar value must survive deallocation of foo’s AR

e Languages with dynamically allocated data
use a heap to store dynamic data

#48

Notes

e The code area contains object code
- For most languages, fixed size and read only

e The static area contains data (not code) with
fixed addresses (e.g., global data)

- Fixed size, may be readable or writable

e The stack contains an AR for each currently
active procedure

- Each AR usually fixed size, contains locals

e Heap contains all other data
- In C, heap is managed by malloc and free

#49

Notes (Cont.)

e Both the heap and the stack grow

« Compilers must take care that they don’t
grow into each other

e Solution: start heap and stack at opposite
ends of memory and let the grow towards
each other

It's what lets you recognize a mistake when you make it again.

#50

Memory Layout with Heap

Low Address
Code

Memory Static Data

Stack High Address

#51

Your Own Heap

e CA4 must emit assembly code for things like:
let x = new Counter(5) in
lety = xin {
X.increment(1);
print(y.getCount()); // what does this print?

3

e You’ll need to use and manage explicit heap
(described today and also in later lectures).
A heap maps addresses (integers) to values.

#52

Homework

 RS4 recommended today
e PA4 due Tuesday

#53

	Cool Type Checking Cool Run-Time Organization
	One-Slide Summary
	Lecture Outline
	SELF_TYPE Dynamic Dispatch
	Where is SELF_TYPE Illegal in COOL?
	Summary of SELF_TYPE
	Slide 7
	Slide 8
	Status
	Run-time environments
	Run-Time Organization Outline
	Run-time Resources
	Slide 13
	Slide 14
	Slide 15
	Memory Layout
	Notes
	What is Other Space?
	Code Execution Goals
	Assumptions about Execution
	Activations
	Lifetimes of Variables
	Activation Trees
	Example
	Example 2
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Revised Memory Layout
	Slide 32
	Q: TV (110 / 842)
	Slide 34
	Slide 35
	Slide 36
	Activation Records
	What is in G’s AR when F calls G?
	The Contents of a Typical AR for G
	Example 2, Revisited
	Stack After Two Calls to f
	Slide 42
	The Main Point
	Discussion
	Discussion (Cont.)
	Globals
	Memory Layout with Static Data
	Heap Storage
	Slide 49
	Notes (Cont.)
	Memory Layout with Heap
	Your Own Heap
	Homework

