
#1

MoreMore
StaticStatic

SemanticsSemantics

#2

One-Slide Summary

• Typing rules formalize the semantics checks
necessary to validate a program. Well-typed
programs do not go wrong.

• Subtyping relations (·) and least-upper-bounds
(lub) are powerful tools for type-checking dynamic
dispatch.

• We will use SELF_TYPEC for “C or any subtype of
C”. It will show off the subtlety of type systems and
allow us to check methods that return self objects.

#3

Lecture Outline

• Typing Rules

• Dispatch Rules
– Static

– Dynamic

• SELF_TYPE
Pictured: using untyped languages.

#4

Assignment

What is this thing? What’s `? O? ·?

[Assign]
O ` id Ã e1 : T1

O(id) = T0

O ` e1 : T1

T1 · T0

#5

Initialized Attributes
• Let OC(x) = T for all attributes x:T in class C

– OC represents the class-wide scope

• we “preload” the environment O with all attributes

• Attribute initialization is similar to let,
except for the scope of names

[Attr-Init]
OC ` id : T0 Ã e1 ;

OC(id) = T0

OC ` e1 : T1

T1 · T0

#6

If-Then-Else
• Consider: if e0 then e1 else e2 fi

• The result can be either e1 or e2

• The dynamic type is either e1’s or e2’s type

• The best we can do statically is the smallest
supertype larger than the type of e1 and e2

#7

If-Then-Else example

• Consider the class hierarchy

• … and the expression
if … then new A else new B fi

• Its type should allow for the dynamic type to
be both A or B
– Smallest supertype is P

P

A B

#8

Least Upper Bounds

• Define: lub(X,Y) to be the least upper
bound of X and Y. lub(X,Y) is Z if
– X · Z Æ Y · Z

Z is an upper bound

– X · Z’ Æ Y · Z’ Z · Z’
Z is least among upper bounds

• In Cool, the least upper bound of two types
is their least common ancestor in the
inheritance tree

#9

If-Then-Else Revisited

[If-Then-Else]

O ` if e0 then e1 else e2 fi : lub(T1, T2)

O ` e0 : Bool

O ` e1 : T1

O ` e2 : T2

#10

Case

• The rule for case expressions takes a lub
over all branches

[Case]
O ` case e0 of x1:T1) e1;

 …; xn : Tn) en; esac : lub(T1’,…,Tn’)

O ` e0 : T0

O[T1/x1] ` e1 : T1’

…

O[Tn/xn] ` en : Tn’

#11

Method Dispatch

• There is a problem with type checking
method calls:

• We need information about the formal
parameters and return type of f

[Dispatch]
O ` e0.f(e1,…,en) : ?

O ` e0 : T0

O ` e1 : T1

…

O ` en : Tn

#12

Notes on Dispatch

• In Cool, method and object identifiers live
in different name spaces
– A method foo and an object foo can coexist in

the same scope

• In the type rules, this is reflected by a
separate mapping M for method signatures:

M(C,f) = (T1,. . .Tn,Tret)

means in class C there is a method f
f(x1:T1,. . .,xn:Tn): Tret

#13

An Extended Typing Judgment

• Now we have two environments: O and M

• The form of the typing judgment is
 O, M ` e : T

read as: “with the assumption that the object
identifiers have types as given by O and the
method identifiers have signatures as given
by M, the expression e has type T”

#14

The Method Environment
• The method environment must be added to

all rules
• In most cases, M is passed down but not

actually used
– Example of a rule that does not use M:

– Only the dispatch rules uses M

[Add]
O, M ` e1 + e2 : Int

O, M ` e1 : T1

O, M ` e2 : T2

#15

The Dispatch Rule Revisited

[Dispatch]
O, M ` e0.f(e1,…,en) : Tn+1’

O, M ` e0 : T0

O, M ` e1 : T1

…
O, M ` en : Tn

M(T0, f) = (T1’,…,Tn’, Tn+1’)

Ti · Ti’ (for 1 · i · n)

Check actual
arguments

Look up formal
argument types Ti’

Check receiver
object e0

#16

Static Dispatch

• Static dispatch is a variation on normal
dispatch

• The method is found in the class explicitly
named by the programmer (not via e0)

• The inferred type of the dispatch expression
must conform to the specified type

#17

Static Dispatch (Cont.)

[Static Dispatch]
O, M ` e0@T.f(e1,…,en) : Tn+1’

O, M ` e0 : T0

O, M ` e1 : T1

…
O, M ` en : Tn

T0 · T

M(T, f) = (T1’,…,Tn’, Tn+1’)

Ti · Ti’ (for 1 · i · n)

#18

How should
we handle

 SELF_TYPE ?

#19

Flexibility vs. Soundness

• Recall that type systems have two conflicting
goals:
– Give flexibility to the programmer

– Prevent valid programs from “going wrong”
• Milner, 1981: “Well-typed programs do not go wrong”

• An active line of research is in the area of
inventing more flexible type systems while
preserving soundness

#20

Dynamic And Static Types

• The dynamic type of an object is ?
• The static type of an expression is ?
• You tell me!

#21

Dynamic And Static Types

• The dynamic type of an object is the class C
that is used in the “new C” expression that
created it
– A run-time notion

– Even languages that are not statically typed have
the notion of dynamic type

• The static type of an expression is a notation
that captures all possible dynamic types the
expression could take
– A compile-time notion

#22

Recall: Soundness

Soundness theorem for the Cool type system:

 E. dynamic_type(E) · static_type(E)

Why is this OK?
– All operations that can be used on an object of type C

can also be used on an object of type C’ · C
• Such as fetching the value of an attribute

• Or invoking a method on the object

– Subclasses can only add attributes or methods

– Methods can be redefined but with same type!

#23

An Example

class Count {
 i : int 0;
 inc () : Count {
 {
 i i + 1;
 self;
 }
 };
};

• Class Count
incorporates a counter

• The inc method works
for any subclass

But there is disaster lurking in
the type system!

#24

Continuing Example

• Consider a subclass Stock of Count

class Stock inherits Count {
 name() : String { …}; -- name of item
};

class Main {
 a : Stock (new Stock).inc ();
 … a.name() …
};

• And the following use of Stock:

Type checking
error !

#25

Post-Mortem

• (new Stock).inc() has dynamic type Stock

• So it is legitimate to write
 a : Stock Ã (new Stock).inc ()

• But this is not well-typed
 (new Stock).inc() has static type Count

• The type checker “loses” type information

• This makes inheriting inc useless
– So, we must redefine inc for each of the subclasses,

with a specialized return type

#26

We’ve been pwned!

#27

SELF_TYPE to the Rescue

• We will extend the type system

• Insight:
– inc returns “self”

– Therefore the return value has same type as “self”

– Which could be Count or any subtype of Count!

– In the case of (new Stock).inc() the type is Stock

• We introduce the keyword SELF_TYPE to use for the
return value of such functions
– We will also modify the typing rules to handle SELF_TYPE

#28

SELF_TYPE to the Rescue (2)

• SELF_TYPE allows the return type of inc to
change when inc is inherited

• Modify the declaration of inc to read

 inc() : SELF_TYPE { … }
• The type checker can now prove:

 O, M ` (new Count).inc() : Count

 O, M ` (new Stock).inc() : Stock

• The program from before is now well typed

#29

SELF_TYPE as a Tool

• SELF_TYPE is not a dynamic type
• SELF_TYPE is a static type

• It helps the type checker to keep better
track of types

• It enables the type checker to accept more
correct programs

• In short, having SELF_TYPE increases the
expressive power of the type system

#30

SELF_TYPE and Dynamic Types
(Example)

• What can be the dynamic type of the object
returned by inc?
– Answer: whatever could be the type of “self”

class A inherits Count { } ;
class B inherits Count { } ;
class C inherits Count { } ;

– Answer: Count or any subtype of Count

 (inc could be invoked through any of these classes)

#31

SELF_TYPE and Dynamic Types
(Example)

• In general, if SELF_TYPE appears textually in
the class C as the declared type of E then it
denotes the dynamic type of the “self”
expression:

dynamic_type(E) = dynamic_type(self) · C

• Note: The meaning of SELF_TYPE depends on
where it appears
– We write SELF_TYPEC to refer to an occurrence

of SELF_TYPE in the body of C

#32

Type Checking
• This suggests a typing rule:
 SELF_TYPEC · C

• This rule has an important consequence:
– In type checking it is always safe to replace

SELF_TYPEC by C

• This suggests one way to handle SELF_TYPE :
– Replace all occurrences of SELF_TYPEC by C

• This would be correct but it is like not having
SELF_TYPE at all (whoops!)

#33

Operations on SELF_TYPE

• Recall the operations on types
– T1 · T2 T1 is a subtype of T2

– lub(T1,T2) the least-upper bound of T1 and T2

• We must extend these operations to handle
SELF_TYPE

• Might take some time ...

#34

Medieval and Literary History
(student “memorial”)

• This collection of verse and prose
tales by Geoffrey Chaucer describes
the stories told by a group of
travelers. The stories present an
oblique critique of society and the
church. It was influential in
promoting the English vernacular (as
opposed to the more stylish French
or Latin) as a vehicle for literature.

#35

Data Structure Trivia
(student “memorial”)

• This k-ary prefix search tree data structure is
commonly used for determining if a string is in a
set of strings. Unlike a BST, nodes in this do not
store their associated key. Instead, a node's
position in the structure defines the key with which
it is associated. Its name is a (pun) portmanteau of
“tree” and “retrieve”.

#36

Modern Rap & Hip-Hop
(student “memorial”)

• This recently-deceased British-
American rapper used intricate
wordplay and a "supervillain" stage
persona (with metal mask). He was
popular in underground and
alternative hip-hop. His Madvillainy
album, with producer Madlib, is #18
on Rolling Stone's “200 Greatest Hip-
Hop Albums of All Time” list.

#37

Medical History

• This 18th century Swedish
botanist introduced the
modern taxonomy used
classify plants and animals.
His influential Systema
Naturae spearheaded and
popularized the use of
“two word” descriptors: a
generic name (genus) and
a specific name (species).

Real-World Languages
• This is the second-largest Slavic

language (after Russian but ahead of
Ukranian). It features an extended
Latin alphabet, high inflection, no
articles, free word order, and mostly
S-V-O sentences. Stanisław Lem is
the most famous science fiction and
fantasy writer in this language.
– Example: Cześć

#39

Extending ·
Let T and T’ be any types except SELF_TYPE
There are four cases in the definition of ·
• SELF_TYPEC ·T if C ·T

• SELF_TYPEC can be any subtype of C

• This includes C itself
• Thus this is the most flexible rule we can allow

• SELF_TYPEC · SELF_TYPEC

• SELF_TYPEC is the type of the “self” expression

• In Cool we never need to compare SELF_TYPEs
coming from different classes

#40

Extending · (Cont.)

• T · SELF_TYPEC always false

Note: SELF_TYPEC can denote any subtype of C.

• T · T’ (according to the rules from before)

Based on these rules we can extend lub …

#41

Extending lub(T,T’)
Let T and T’ be any types except SELF_TYPE
Again there are four cases:
• lub(SELF_TYPEC, SELF_TYPEC) = SELF_TYPEC

• lub(SELF_TYPEC, T) = lub(C, T)

This is the best we can do because SELF_TYPEC · C

• lub(T, SELF_TYPEC) = lub(C, T)

• lub(T, T’) defined as before

#42

Where Can SELF_TYPE
Appear in COOL?

• The parser checks that SELF_TYPE appears
only where a type is expected

• But SELF_TYPE is not allowed everywhere a
type can appear:

• class T inherits T’ {…}
• T, T’ cannot be SELF_TYPE
• Because SELF_TYPE is never a dynamic type

• x : T
• T can be SELF_TYPE

• An attribute whose type is SELF_TYPEC

#43

Where Can SELF_TYPE
Appear in COOL?

1. let x : T in E
• T can be SELF_TYPE

• x has type SELF_TYPEC

2. new T
• T can be SELF_TYPE

• Creates an object of the same type as self

• m@T(E1,…,En)

• T cannot be SELF_TYPE

#44

Typing Rules for SELF_TYPE

• Since occurrences of SELF_TYPE depend on
the enclosing class we need to carry more
context during type checking

• New form of the typing judgment:

 O,M,C ` e : T

 (An expression e occurring in the body of C
has static type T given a variable type
environment O and method signatures M)

OMC = “Oh My Cool!” ?

#45

Type Checking Rules

• The next step is to design type rules using
SELF_TYPE for each language construct

• Most of the rules remain the same except
that · and lub are the new ones

• Example:

O,M,C ` id Ã e1 : T1

O(id) = T0

O,M,C ` e1 : T1

T1 · T0

#46

What’s Different?

• Recall the old rule for dispatch

O,M,C ` e0.f(e1,…,en) : Tn+1’

O,M,C ` e0 : T0

…

O,M,C ` en : Tn

M(T0, f) = (T1’,…,Tn’,Tn+1’)

Tn+1’ SELF_TYPE

Ti · Ti’ 1 · i · n

#47

The Big Rule for SELF_TYPE
• If the return type of the method is

SELF_TYPE then the type of the dispatch is
the type of the dispatch expression:

O,M,C ` e0.f(e1,…,en) : T0

O,M,C ` e0 : T0

 …

O,M,C ` en : Tn

M(T0, f) = (T1’,…,Tn’, SELF_TYPE)

Ti · Ti’ 1 · i · n

#48

What’s Different?

• Note this rule handles the Stock example
• Formal parameters cannot be SELF_TYPE
• Actual arguments can be SELF_TYPE

– The extended · relation handles this case

• The type T0 of the dispatch expression could
be SELF_TYPE
– Which class is used to find the declaration of f?

– Answer: it is safe to use the class where the
dispatch appears

#49

Static Dispatch
• Recall the original rule for static dispatch

O,M,C ` e0@T.f(e1,…,en) : Tn+1’

O,M,C ` e0 : T0

…

O,M,C ` en : Tn

T0 · T

M(T, f) = (T1’,…,Tn’,Tn+1’)

Tn+1’ SELF_TYPE

Ti · Ti’ 1 · i · n

#50

Static Dispatch
• If the return type of the method is

SELF_TYPE we have:

O,M,C ` e0@T.f(e1,…,en) : T0

O,M,C ` e0 : T0

 …

O,M,C ` en : Tn

T0 · T

M(T, f) = (T1’,…,Tn’,SELF_TYPE)

Ti · Ti’ 1 · i · n

#51

Static Dispatch
• Why is this rule correct?
• If we dispatch a method returning SELF_TYPE

in class T, don’t we get back a T?

• No. SELF_TYPE is the type of the self
parameter, which may be a subtype of the
class in which the method body appears
– Not the class in which the call appears!

• The static dispatch class cannot be
SELF_TYPE

#52

New Rules

• There are two new rules using SELF_TYPE

• There are a number of other places where
SELF_TYPE is used

O,M,C ` self : SELF_TYPEC

O,M,C ` new SELF_TYPE : SELF_TYPEC

#53

Where is SELF_TYPE
Illegal in COOL?

m(x : T) : T’ { … }
• Only T’ can be SELF_TYPE !

What could go wrong if T were SELF_TYPE?

class A { comp(x : SELF_TYPE) : Bool {…}; };
class B inherits A {
 b() : int { … };
 comp(y : SELF_TYPE) : Bool { … y.b() …}; };
…
 let x : A new B in … x.comp(new A); …
…

#54

Summary of SELF_TYPE
• The extended · and lub operations can do a

lot of the work. Implement them to handle
SELF_TYPE

• SELF_TYPE can be used only in a few places.
Be sure it isn’t used anywhere else.

• A use of SELF_TYPE always refers to any
subtype in the current class
– The exception is the type checking of dispatch.

– SELF_TYPE as the return type in an invoked
method might have nothing to do with the
current class

#55

Why Cover SELF_TYPE ?
• SELF_TYPE is a research idea

– It adds more expressiveness to the type system

– Without allowing in any “bad” programs

• SELF_TYPE is itself not so important
– except for the project

• Rather, SELF_TYPE is meant to illustrate that
type checking can be quite subtle

• In practice, there should be a balance
between the complexity of the type system
and its expressiveness

#56

Type Systems

• The rules in these lecture were Cool-specific
– Other languages have very different rules

– We’ll survey a few more type systems later

• General themes
– Type rules are defined on the structure of expressions

– Types of variables are modeled by an environment

• Types are a play between flexibility and safety

#57

Homework
• PA4c Checkpoint Due
• PA4 due after the break but …

	More Static Semantics
	One-Slide Summary
	Lecture Outline
	Assignment
	Initialized Attributes
	If-Then-Else
	If-Then-Else example
	Least Upper Bounds
	If-Then-Else Revisited
	Case
	Method Dispatch
	Notes on Dispatch
	An Extended Typing Judgment
	The Method Environment
	The Dispatch Rule Revisited
	Static Dispatch
	Static Dispatch (Cont.)
	Handling the SELF_TYPE
	Flexibility vs. Soundness
	Dynamic And Static Types
	Slide 21
	Soundness
	An Example
	Continuing Example
	Post-Mortem
	We’ve been pwned!
	SELF_TYPE to the Rescue
	SELF_TYPE to the Rescue (2)
	SELF_TYPE: Binford Tools
	SELF_TYPE and Dynamic Types (Example)
	Slide 31
	Type Checking
	Operations on SELF_TYPE
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Extending ·
	Extending · (Cont.)
	Extending lub(T,T’)
	Where Can SELF_TYPE Appear in COOL?
	Where Can SELF_TYPE Appear in COOL?
	Typing Rules for SELF_TYPE
	Type Checking Rules
	What’s Different?
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	New Rules
	Where is SELF_TYPE Illegal in COOL?
	Summary of SELF_TYPE
	Why Cover SELF_TYPE ?
	Type Systems
	Homework

