“NOBODY UNDERSTANDS ME.Y

Scoping
and

Type
Checking

#1

Google speeds up Chrome by compiling
JavaScript in the background

By EMIL PROTALINSKI, Thursday, 13 Feb'14, 06:44pm

oer -

b whﬁ’i - L

@ 7COMMENTS E n € PREVIOUS | NEXT »

G oogle today revealed a tweak it has made in the latest Chrome beta to
further boost performance: concurrent compilation, which offloads a

large part of the optimizing compilation phase to a background thread.
Previously, Chrome compiled JavaScript on the main thread, where it could

interfere with the performance of the JavaScript application.

As aresult, Google says JavaScript applications remain responsive and

performance gets a boost. This is all handled by V8, Chrome's JavaScript engine.

#2

Semantic Fever: Catch it!

Course Goals and Objectives

o At the end of this course, you will be
acquainted with the fundamental concepts in
the design and implementation of high-level
programming languages. In particular, you
will understand the theory and practice of
lexing, parsing, semantic analysis, and code
interpretation. You will also have gained
practical experience programming in multiple
different languages.

#4

In One Slide

» Scoping rules match identifier uses with
identifier definitions.

e A type is a set of values coupled with a
set of operations on those values.

e A type system specifies which operations
are valid for which types.

« Type checking can be done statically (at
compile time) or dynamically (at run
time).

#5

Lecture Outline

e The role of semantic analysis in a compiler
- A laundry list of tasks

Your continued donations keep Wikipedis running!

Context-free language

From Wikipedia, the free encyclopedia

!-- Redirected from Context free language

WIKIPEDIA uag

The Free Encyclopedia
navigation The introduction to this article provide£ insufficient context for those unfamiliar with the subject matter.
= Main page Please help improve the introduction to meet Wikipedia's layout standards. You can discuss the issue on the talk page.
m Community portal
= Featured content A context-free language is a formal language that is a member of the set of languages defined by context-free grammars. The set of
= Current events context-free languages is identical to the set of languages accepted by pushdown automata.
m Recent changesz
= Random articls Contents [hide]
m About Wikipedia
= Contact us 1 Examples
= Make a donation 2 Closure Properies

The Interpreter So Far

e Lexical analysis
- Detects inputs with illegal tokens

e Parsing
- Detects inputs with ill-formed parse trees

 Semantic analysis
- Last “front end” phase
- Catches more errors

#7

What’s Wrong?

e Example 1
lety: Intinx + 3

e Example 2 it w” ,
; BENLIAN G AVESLT
let y: Str]ng « X RSWINFORD, mﬁ“(“i \ E E‘/

SR [qisins (4708
Table] WHERF {Equipment T} =4

f Sesame Seeds M

1 it “002@
BEST BEFQRE END
AUG 2007 8317T4A

Why a Separate Semantic
Analysis?
e Parsing cannot catch some errors

e Some language constructs are not context-
free

- Example: All used variables must have been
declared (i.e. scoping)

- Example: A method must be invoked with
arguments of proper type (i.e. typing)

#9

What Does Semantic Analysis Do?

 Many checks! For example, cool checks:
1. All identifiers are declared

2.

o U1 M W

Static Types
Inheritance relationships (no cycles, etc.)

. Classes defined only once

Methods in a class defined only once
Reserved identifiers are not misused

And others . . .
e The requirements depend on the language

Which of these are checked by Python?

#10

Scope
e Scoping rules match identifier uses with
identifier declarations

- Important semantic analysis step in most
languages

- Including Cool and Java and C++ and C# and ...
- (Even Python has global ...)

'J-

Severe

@ The TypelDef struckure recieved does nok match the TypelDef skructure recieved |

Ok]

Scope (Cont.)

e The scope of an identifier is the portion of a
program in which that identifier is accessible

e The same identifier may refer to different
things in different parts of the program

- Different scopes for same name don’t overlap

e An identifier may have restricted scope

#12

Static vs. Dynamic Scope

e Most languages have static scope

- Scope depends only on the program text, not
run-time behavior

- Cool, Java, C++, C#, etc., have static scope

e Ancient history: dynamically scoped
- Lisp, SNOBOL, Tex, Perl, PostScript

- Lisp has changed to mostly static scoping
- Scope depends on execution of the program

#13

Static Scoping Example

let x: Int <- 0 in

{
X,
fletx: Int<-11in
X; §
X,

#14

Static Scoping Example (Cont.)

letX) Int <- 0 in

{
X
{ let|x] Int <-11n
X] };
X
}

Uses of x refer to closest enclosing definition

#15

Scope in Cool

e Cool identifier bindings are introduced by
- Class declarations (introduce class hames)
- Method definitions (introduce method names)
- Let expressions (introduce object id’s)
- Formal parameters (introduce object id’s)
- Attribute definitions in a class (introduce object
id’s)
- Case expressions (introduce object id’s)

#16

Implementing the
Most-Closely Nested Ru le

YOU DID WHAT? WHERE AN ARMY
OF HOSTILE ALIENS YEAH, | DIDN'T
l HlT_‘_T‘;':;i;U; IS NOW GATHERING _ KNOW C# COULD
THA TO SWEEP THROUGH geel=| |\ oo THAT E1THER,
OPEN A PORTAL | | AND TAKE OVER A B
TO A PARALLEL OUR. PLANET.

UNIVERSE...

. Much of semantic analysis can be expressed
as a recursive descent of an AST

- Process an AST node n
- Process the children of n
- Finish processing the AST node n

#17

Implementing . . . (Cont.)

« Example: the scope of let bmdmgs is one
subtree B

let x;: Int <0 ine

Eaﬂg = Hlanet —

. Ell SIII'EIIMAN IS :
e X Can be used in subtree e || ﬂlAIII(I(EH'I'l I

Symbol Tables

o Consider again: let x: Int < Oine

e |ldea:

- Before processing e, add definition of x to current
definitions, overriding any other definition of x

- After processing e, remove definition of x and restore old
definition of x

« A symbol table is a data structure that tracks the
current bindings of identifiers
- You’ll need to make one for PA4
- OCaml’s Hashtbl is designed to be a symbol table

#19

Scope in Cool (Cont.)

e Not all kinds of identifiers follow the most-
closely nested rule

e For example, class definitions in Cool
- Cannot be nested
- Are globally visible throughout the program

e In other words, a class name can be used
before it is defined

#20

Example: Use Before Definition

Class Foo {
...lety: Testin. ..

&

Class Test {

AVG Free Edition »

i T ezt cannot be started becauze it already does not exist,

&

More Scope in Cool

Attribute names are global within the class in
which they are defined

Class Foo {
f(): Int { tm };
tm: Int <O0;

}

More Scope (Cont.)

e Method and attribute names have complex
rules

e A method need not be defined in the class in
which it is used, but in some parent class

- This is standard inheritance!

e Methods may also be redefined (overridden)

#23

Class Definitions

Class names can be used before being ¢

We can’t check this property
- using a symbol table
- or even in one pass :-(

Solution
- Pass 1: Collect all class names

- Pass 2: Do the checking
-7

- Pass 4: Profit!

Semantic analysis needs multiple passes
- Probably more than two

#24

Q: Advertising (832 / 842)

e Translate the last line in this French
M&Ms jingle: Nous sommes les
M&Ms / Nous sommes les M&GMs /

Des belles coleurs en choix / Des
belles coleurs en choix / Tout le
monde nous aime / C'est nous, les

M&Ms / M&Ms fondent dans la
bouche, pas dans la main.

Trivia: Hip Hop

(student “memorial”)

e This rapper and activist has
won three Grammies and an
Academy Award. His award-
winning sixth album, “Be”,

featured the single “Go!” and a§
mini-movie “Testify”. He has

feuded with Drake. He is known

for positive lyrics and a spoken-

word style.

Trivia: Hip Hop

(student “memorial”)

e This rapper and activist has
won three Grammies and an
Academy Award. His award-
winning sixth album, “Be”,

featured the single “Go!” and a§
mini-movie “Testify”. He has

feuded with Drake. He is known

for positive lyrics and a spoken-

word style.

Trivia: State Capitals

(student “memorial”)

e This Keystone State state capital
sits on the Susquehanna River. It
is infamous for the Three-Mile

Island nuclear meltdown of 1979.

Trivia: Mythology
(student “memorial”)
e These supernatural evil
creatures are cousins to
the Yakshas in Hindu
mythology. They are

often depicted as shape-
shifting, fanged human-
eaters. They are the main
antagonists of the epic
Ramayana: they kidnap
Sita, the wife of Rama.

Real-World Languages

e This Asian language, sometimes called
Siamese, is mutually intelligible with Lao
and is spoken by 61+ million. It is tonal
and has a complex writing system. The
language’s literature is influenced by

India; its literature epic is a version of
the Ramayana.

- Example: & ISH

Types

 What is a type?
- The notion varies from language to language

e Consensus
- A set of values
- A set of valid operations on those values

e Classes are one instantiation of the modern
notion of type

#31

Why Do We Need Type Systems?

Consider the assembly language fragment
add r1 <-r2 +r3

What are the types of r1, r2, r3?

How CAN FREE WiLL IF BATMAN DNED,
Go DEEP. COEXIST WITH DIVINE Too DEEP. WoULD THE JOKER
\ PRECRDINATIONT BE HAPPY?
! 4
e . xﬁépgg;:;\': W
R
_} g..;g i
+++++
o 4 G
e #32

Types and Operations

e Certain operations are legal or valid for
values of each type

- It doesn’t make sense to add a function pointer
and an integer in C

- It does make sense to add two integers

- But both have the same assembly language

implementation!
#33

Type Systems

e A language’s type system specifies which
operations are valid for which types

e The goal of type checking is to ensure that
operations are used with the correct types

- Enforces intended interpretation of values,
because nothing else will!
e Our last, best hope ... for victory!

e Type systems provide a concise formalization
of the semantic checking rules

#34

What Can Types do For Us?

e Can detect certain kinds of errors

« Memory errors:
- Reading from an invalid pointer, etc.

e Violation of abstraction boundaries:

class FileSystem { class Client {

open(x : String) : File { f(fs : FileSystem) {
File fdesc <- fs.open(“foo”)

}

} -- f cannot see inside fdesc !

}

#35

Type Checking Overview

e Three kinds of languages:

- Statically typed: All or almost all checking of
types is done as part of compilation (C, Java,
Cool, OCaml, Haskell, C#, C++, ...)

- Dynamically typed: Almost all checking of types
is done as part of program execution (Scheme,
Ruby, Python, PHP, JavaScript, ...)

- Untyped: No type checking (machine code)

#36

The Type Wars

« Competing views on static vs. dynamic typing

 Static typing proponents say:

- Static checking catches many programming
errors at compile time

- Avoids overhead of runtime type checks
 Dynamic typing proponents say:
- Static type systems are restrictive

- Rapid prototyping is easier in a dynamic type
system

#37

The Type Wars (Cont.)

e In practice, most code is
written in statically typed

languages with an “escape”
mechanism

- Unsafe casts in C, native
methods in Java, unsafe
modules in Modula-3

e Dynamic typing (sometimes
called “duck typing”) is big in
the scripting / glue world

#38

Cool Types

e The types are:
- Class nhames
- SELF_TYPE

e There are no unboxed base types (unlike int
in Java)

e The user declares types for all identifiers

e The compiler infers types for expressions
- Infers a type for every expression
- Java and C and C++ and C# (etc.) do this too!

#39

Type Checking and Type Inference

e Type Checking is the process of verifying
fully typed programs

e Type Inference is the process of filling in
missing type information

e The two are different, but are often used
interchangeably

#40

Rules of Inference

« We have seen two examples of formal
notation specifying parts of a compiler

- Regular expressions (for the lexer)
- Context-free grammars (for the parser)

e The appropriate formalism for type checking
is logical rules of inference

#41

Why Rules of Inference?

 Inference rules have the form
If Hypothesis is true, then Conclusion is true

« Type checking computes via reasoning
If E, and E, have certain types,

then E, has a certain type

e Rules of inference are a compact notation
for “If-Then” statements

#42

From English to an Inference Rule

e The notation is easy to read (with practice)

 Start with a simplified system and gradually
add features

e Building blocks
- Symbol AN is “and”
- Symbol = is “if-then”
- x:Tis “x has type T”

#43

English to Inference Rules (2)

If e, has type Int and e, has type Int,
then e, + e, has type Int

(e, has type Int \ e, has type Int) =
e, + e, has type Int

(e,:Int N e,sInt) = e, +e,: Int

#44

English to Inference Rules (3)

The statement
(e:Int N e,sInt) = e, +e,: Int
is a special case of

(Hypothesis, \ . . . \ Hypothesis_) =
Conclusion

This is an inference rule

#45

Notation for Inference Rules

e By tradition inference rules are written

- iHypothesis, ... | Hypothesis
- Conclusion

e Cool type rules have hypotheses and
conclusions of the form:

Fe:T
- - means “we can prove that . . .”

#46

Two Rules

[Int]

i Int (i is an integer)
- e, :Int
- e, : Int
[Add]

Fe +e,:Int

#47

Two Rules (Cont.)

e These rules give templates describing how to
type integers and + expressions

By filling in the templates, we can produce
complete typings for expressions

 We can fill the template with any
expression!

I true : Int I false : Int
I true + false : Int

#48

Example: 1 + 2

1 :Int 2 :Int

1+ 2:Int

Al cdls have four legs.
[hove four legs.
- TheGhe, [am @ cdl,

S
\

@\
\Eﬁ\

l
hijey

Homework

e PA4t Due Today

- Why? We really don't want students to fall behind
on PA4 or put it off until after the break.

e PA4c Before Break

#50

	Scoping and Type Checking
	Slide 2
	Next, Let’s Talk About Midterm 1
	Slide 4
	In One Slide
	Outline
	The Compiler So Far
	What’s Wrong?
	Why a Separate Semantic Analysis?
	What Does Semantic Analysis Do?
	Scope
	Scope (Cont.)
	Static vs. Dynamic Scope
	Static Scoping Example
	Static Scoping Example (Cont.)
	Scope in Cool
	Implementing the Most-Closely Nested Rule
	Implementing . . . (Cont.)
	Symbol Tables
	Scope in Cool (Cont.)
	Example: Use Before Definition
	More Scope in Cool
	More Scope (Cont.)
	Class Definitions
	Q: Advertising (832 / 842)
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Types
	Why Do We Need Type Systems?
	Types and Operations
	Type Systems
	What Can Types do For Us?
	Type Checking Overview
	The Type Wars
	The Type Wars (Cont.)
	Cool Types
	Type Checking and Type Inference
	Rules of Inference
	Why Rules of Inference?
	From English to an Inference Rule
	From English to an Inference Rule (2)
	From English to an Inference Rule (3)
	Notation for Inference Rules
	Two Rules
	Two Rules (Cont.)
	Example: 1 + 2
	Homework

