

Exam Note

e Code generation is not on Exam #1
o Code generation is on Exam #2

i /.
~ o — . . g -
Gale: The reason I make a point of.saying this is that I've grown confident enough to tell you somethin
-

another living soul. Except for my cat.

Huge One-Slide Summary

Assembly language is untyped, unstructured, low-level and imperative. In a load-
store architecture, instructions operate on registers (which are like global
variables). The stack pointer is a special-purpose register.

We can generate code by targeting a stack machine and using assembly instructions
to implement the stack. The stack holds intermediate values, temporaries, and
function arguments. The accumulator register (conceptually, the top of the stack)
holds the result of the last computation. As an invariant, the stack is unchanged by
intermediate calculations.

We will maintain a stack discipline (or calling convention). Each function call is
represented on the stack by an activation record (or stack frame). The activation
record contains the frame pointer, the parameters, the self object pointer, the
return address, and space for temporaries. The code you generate for function
calls and function bodies must consistently agree on the calling convention.

Our object layout choice must support using a subtype whenever a supertype is
expected. Objects are contiguous blocks of memory that hold bookkeeping
information (e.g., type tags, method pointers) as well as space for fields.
Subobjects will extend (be bigger than in memory) their superobjects and will share
a common prefix.

A dispatch table (or virtual function table or vtable) is an array of pointers to
methods. Each object points to its vtable, and members of a class share one vtable.
This allows us to implement dynamic dispatch: method invocation is resolved by
looking up the method address in the object’s vtable at runtime.

#3

(Two Day) Lecture Outline

e Stack machines
- e.gd., Java Virtual Machine

« The COOL-ASM assembly language
- Similar to Java Bytecode, MIPS, RISC, etc.

e A simple source language

e Stack-machine implementation of the
simple language

e An optimization: stack-allocated variables

e Object Oriented Code Generation
- Object Layout, Dynamic Dispatch

#4

Stack Machines

e A simple evaluation model
e No variables or registers
» A stack of values for intermediate results

#5

Example
Stack Machine Program

e Consider two instructions
- push i - place the integer i on top of the stack
- add - pop two elements, add them and put
the result back on the stack

e A program to compute 7 + 5:
push 7

push 5
add

#6

Stack Machine Example

Tl

stack

7 7 O 12

push 7 push 5 add

e Each instruction:
- Takes its operands from the top of the stack
- Removes those operands from the stack
- Computes the required operation on them
- Pushes the result on the stack

Why Use a Stack Machine ?

e Each operation takes operands from the
same place and puts results in the same
place

e This means a uniform compilation scheme

e And therefore a simpler compiler
- This is how many/most compilers get started
- Optimizing compilers are more complicated

#8

Why Use a Stack Machine ?

e Location of the operands is implicit
- Always on the top of the stack

e No need to specify operands explicitly
e No need to specify the location of the result
o Instruction “add” as opposed to “add r, r,”
— Smaller encoding of instructions
— More compact programs (= faster: why?)

e This is one reason why Java Bytecodes use a
stack evaluation model

#9

Optimizing the Stack Machine

e The add instruction does 3 memory
operations

- Two reads and one write to the stack
- The top of the stack is frequently accessed
e Idea: keep the top of the stack in a
register (called the accumulator)
- This should remind you of Fold
. Fear my course
- Register accesses are faster organization!)

e The “add” instruction is now
acc <« acc + top_of_stack
- Only one memory operation!

#10

Accumulator Invariants

e The result of computing an expression is
always in the accumulator

« For an operation op(e,,...,e,) push the

accumulator on the stack after computing
each of e,,...,e, .

- e 's result is in the accumulator before op
- After the operation pop n-1 values

o After computing an expression the stack is
as before

U Example on next slide! T

#11

Stack Machine with

Accumulator: Example
« Compute 7 + 5 using an accumulator

aCC 7 5 7/ 12
7 7

stack

acc « 7 acc < 5 acc <« acc + top_of_stack

push acc pPop

#12

A Bigger Example: 3 + (7 + 5)

Code Acc
acc « 3 3
push acc 3
acc <« 7/ /
push acc 7/
acc < 5 5

acc < acc + top_of_stack 12
pop 12
acc < acc + top_of_stack 15
pop 15

Stack
<init>

3, <init>
3, <init>
7/, 3, <init>
7/, 3, <init>
7/, 3, <init>
3, <init>
3, <init>
<init>

#13

Notes

e It is critical that the stack is preserved
across the evaluation of a subexpression

- Stack before evaluating 7 + 5 is 3, <init>
- Stack after evaluating 7 + 5 is 3, <init>
- The first operand is on top of the stack

Endings to the Oregon Trail

100%%
S0%

B0%

70%
& 60%
50%
0%
0%
20%

10%
0% |

Complete Journey Dysentery

Graphlam Type of Ending #1 4

Risky Business

« Two high-level CPU architectures

e Complex Instruction Set Computers (CISC)

- Architecture in which single instructions can
execute several low-level operations (such as a
load from memory, an arithmetic operation, and a
memory store) “all at once”

e Reduced Instruction Set Computers (RISC)

- Architecture in which each instruction performs
only one function (e.g., copy a value from
memory to a register), hopefully efficiently

#15

Example: Apple “M” Series

A family of 64-bit ARM-based system-on-chips (SoCs) from Apple. In late 2020, Apple began
switching its MacBook line from Intel x86 CPUs to the M1, the first chip in Apple’s M series (see
MacBook). In the following year, an M1-based iMac debuted, and a new top-end desktop computer
was engineered around the M1 (see Mac Studio). In 2021, iPads began switching from Apple A

chips to M. See SoC.

CISC to RISC and RISC to RISC

The ARM-based M series is a RISC design rather than Intel's x86 CISC architecture. RISC circuits
use less complex instructions, run cooler and thus save battery, which is why an ARM chip is used
in every smartphone as well as all Apple and Android tablets. Since day one, iPhones and iPads

have been ARM based (see Apple A series).

In 2021, starting with the iPad Pro, Apple began the migration from its A series to the M series
(RISC to RISC). Future iPhones are likely to use the M chips as well. See RISC, CISC and Intel Mac.

- PC Magazine

#16

From Stack Machines to RISC

e Our compiler will generate code for a
stack machine with accumulator

« We want to run the resulting code on a
processor

e We'll implement stack machine
instructions using COOL-ASM instructions
and registers

e Thus: Assembly Language

Assembling The Team

COOL-ASM is a RISC-style assembly language

- An untyped, unsafe, low-level, fast programming
language with few-to-no primitives.

A register is a fast-access untyped global variable

shared by the entire assembly program.

- COOL-ASM: 8 general registers and 3 special ones
(stack pointer, frame pointer, return address)

An instruction is a primitive statement in assembly
language that operates on registers.

- COOL-ASM: add, jmp, ld, push, ...

A load-store architecture: bring values in to

registers from memory to operate on them. s

Drink Your Cool-Aid

e Sample COOL-ASM instructions:
- See the CRM for all of them ...

add r2 <-r5r2 s r2=r5+r2

i r5 <- 183 > r5 =183

ld r2 <- r1[5] ; T2 =7(r1+3) |———

st r1[6] <- r7 s *(r1+6) =r7

my_label: -- dashdash also a comment
push r1 > *sp=r1; sp --;

sub r1 <-r1 1 cr1--

bnz r1 my_label s if (r1 1= 0) goto my_label

9

Simulating a Stack Machine...

e The accumulator is kept in register r1
- This is just a convention. You could pick r2.

e The stack is kept in memory

e The stack grows towards lower addresses
- Standard architecture convention (MIPS)
e The address of the next unused location
on the stack is kept in register sp
- The top of the stack is at address sp + 1

- COOL-ASM “Word Size” = 1 = # of memory

cells taken up by one integer/pointer/string
#20

Trivia: CS History

e This operating system was first developed in
the 1970's by Dennis Ritchie, Ken Thompson,
and others at Bell Labs. It supported multiple
users and multiple tasks running on the same
machine (often the 16-bit PDP 11 available
from DEC). Innovations include the
“everything is a file” philosophy, pipelines
and filters of small utility processes, and shell
scripting of workflows. It was the first
portable OS, developed almost entirely in C.

Trivia: Computer Scientists

e This US Navy Rear Admiral is credited with
inventing the first compiler for a computer
programming language, as well as
popularizing machine-independent languages.

The term “debugging” also originates here:

Cool Assembly Example

e The stack-machine code for 7 + 5;

acc <-7 lirlt7

push acc sw sp[0] <- r1
sub sp <-sp 1

acc <- 5 lir1th

acc <- acc + top_of_stack Iw r2 <- sp[1]
addr1 <-r1r2

pop add sp <-sp 1

- We now generalize this to a simple language...

#23

Stack Instructions

e We have these COOL-ASM instructions:

push rX st sp[0] <- rX
sub sp <- sp 1
pop rX ld rX <- sp[1]
add sp <-sp 1
: Note:

rX <- top ld rX <- sp[1]

#24

A Small Language

e A source language with integers and integer
Operations Change Passwor d

Enter your current and new passwords,

P—>D;P|D

D — def id(ARGS) = E;

ARGS — id, ARGS | id

E— int | id | if E, = E, then E, else E,
| E,+E, | E,-E, | id(E,,...,E.)

#25

A Small Language (Cont.)

e The first function definition f is the
“main” routine

e Running the program on input i means
computing f(i)
e Program for computing the Fibonacci
numbers:
def fib(x) = if x =1 then 0 else
if x =2 then 1 else

fib(x - 1) + fib(x - 2)

#26

Code Generation Strategy

e For each expression e we generate COOL-
ASM code that:

- Computes the value of e in r1 (accumulator)
- Preserves sp and the contents of the stack

« We define a code generation function
cgen(e) whose result is the code
generated for e

#27

Code Generation for Constants

e The code to evaluate a constant simply
copies it into the accumulator:

cgen(123) = lir1 123

e Note that this also preserves the stack, as
required

Ages 2 and Up $‘| .00 H;-';;::;‘g::;x

1 PIECE g\ T

897016 221781

g WARNING:

MADE I HOKING HAZARD - Small parts

©2007 Woi g Lid Lot
* All Righ's Ree =d l"ﬂﬂﬂf Ei

Code Generation: Add

cgen(e, +e,) =

cgen(e
" tlissome gen(e.)
unused push rt
“temporary” = cgen(e,)

~ register ::e2 now inri
&pop t1
add r1 t1 r1

« Possible optimization: Put the result of e.
directly in register t1 ?

#29

Code Generation Mistake

« Unsafe Optimization: put the result of e, directly in t1?

cgen(e, + e,) =
cgen(e,)
mov t1 <-r1
cgen(e,) A
addr1 <- t1 r1 .\""

OCEAN'S NINETEEN

SUMM

o Try to generate code for : 3 + (7 +5

A —

#30

Code Generation Notes

e The code for + is a template with “holes”
for code for evaluating e, and e,

e Stack-machine code generation is
recursive

« Code for e, + e, consists of code for e, and
e, glued together

e Code generation can be written as a
recursive-descent tree walk of the AST

- At least for expressions

#31

Code Generation: Sub

« New instruction: sub reg, <- reg, reg,
- Implements reg, < reg, - reg,

cgen(e, - e,) =

cgen(e,) CAFETERI A
push r1 RESTAURANT!
pop t1

subr1 <-t1r1

Code Generation: If

e We need flow control instructions

« New instruction: beq reg, reg, label
- Conditional Branch to label if reg, = reg,

e New instruction: jmp label
- Unconditional Jump to label

#33

Code Generation for If (Cont.)

cgen(if e, = e, then e;else e,) =
cgen(e,)
push r1
cgen(e,)
pop t1
beq r1 t1 true_branch ;; else fall through
cgen(e,)
jmp end_if
true_branch:
cgen(e,)

end_if: "

Trivia: Beatles & Skyrim

o This lonely 1966 hit from the album Revolver features a
double string quartet arrangement, making it distinct
from standard popular music at the time. The
eponymous character wears a “face that she keeps in a
jar by the door”.

Name the two main military factions in Tamriel, one of
which suppresses religious freedom (banning the worship
of Talos as per the White Gold Concordant surrender
treaty to the Altmer) and one of which is quite racist
(see the Grey Quarter of Windhelm and “Skyrim belongs
to the Nords!”) and secessionist.

The Activation Record

e An activation record (or stack frame)
stores calling context information on the
stack during a function call.

e Code for function calls/definitions depends
on the layout of the activation record

e A very simple AR suffices for this language:

- The result is always in the accumulator
e No need to store the result in the AR

- The activation record holds actual parameters
o For f(x,,...,x.) push x,,...,x_on the stack

« These are the only variables in this language 436

Calling Convention

e This calling convention (or stack
discipline) guarantees that on function
exit sp is the same as it was on entry

- No need to save sp
e We need the return address
e It’s handy to have a pointer to start of the

current activation

- This pointer lives in register fp (frame
pointer)

- Reason for frame pointer will be clear shortly
#37

The Activation Record

e Summary: For this language, an AR with
the caller’s frame pointer, the actual
parameters, and the return address

suffices

e Picture: Consider a call to f(x,y). The AR

will be:

AR of <<

/"

y

SP, FP

X

old FP —

)

high
addresses

#38

Code Generation: Function Call

e The calling sequence is the instructions
(of both caller and callee) to set up a
function invocation

e New instruction: call label

- Jump to label, save address of next
instruction in ra

- On other architectures the return address is
stored on the stack by the “call” instruction

- (This is also called “branch and link™.)

#39

Code Generation: Function Call

cgen(f(e,,...,e) =
push fp
cgen(e,)
push r1

cgen(e,)
push r1
call f_entry

pop fp

- The caller saves its value

of the frame pointer

- Then it saves the actual

arguments in order

- The caller saves the

return address in register
ra

- The AR so far is n+1 bytes

long

- Caller restores fp

#40

Code Generation: Function Def

e New instruction: return
- Jump to address in register ra

cgen(def f(x,,...,x.) = e) =
f_entry:

mov fp <- sp

push ra

cgen(e)

ra <- top

add sp <-sp z

return

- Note: The frame pointer

points to the top, not
bottom of the frame

- The callee pops the return

address, the actual
arguments and the saved
value of the frame pointer

¢ Z=n+2(sofar)

#41

Calling Sequence: f(x,y)

Before call

o SP
high
addresses

SP

FP FP

On entry

y

X

old FP—

SP

FP

In body

RA
y

X

old FP—

After call

SP

FP

#42

Code Generation: Variables

e Variable references are the last construct

e The “variables” of a function are just its
parameters

- They are all in the AR
- Pushed by the caller

e Problem: Because the stack grows when
intermediate results are saved, the
variables are not at a fixed offset from sp

- Challenge question: what are they at a fixed

offset from?
#43

Code Generation: Variables

 Solution: use the frame pointer

- Always points to the return address on the
stack (= the value of sp on function entry)

- Since it does not move it can be used to find
arguments stored on the stack

o Let x. be the it (i = 1,...,n) formal

parameter of the function for which code
is being generated

#44

Code Generation:
« Example: For a function ¢

Variables
ef f(x,,x,) = e

the activation and frame
up as follows:

hointer are set

>F X,isatfp + 2
Ep RA X, is at fp + 1
% Thus:
X cgen(x,) = ld r1 <- fp[z]
old FP_

Y (z=n+1-1)
high
addresses

#45

Summary

e The activation record must be designed
together with the code generator

e Code generation can be done by recursive
traversal of the AST

e If you write a compiler, we recommend
starting with a stack machine (simpler!)

#46

More Information

e use cool --asm hello-worl.cl for examples

e Production compilers do different things

- Emphasis is on keeping values (esp. current
stack frame) in registers

- Intermediate results are laid out in the AR,
not pushed and popped from the stack

#47

Optimization:
Allocating Temporaries
in the Activation Record

#48

Review

e The stack machine code layout we've
described so far has activation records
and intermediate results interleaved on
the stack

AR

Intermediates

AR

Intermediates

#49

Stack Machine Implications

e Advantage: Very simple code generation

e Disadvantage: Very slow code

- Storing and loading temporaries requires a
store/load and sp adjustment

L)

o

HOW CAN SOMETHING SEEM
S0 PLAUSIELE AT THE TWME
AND 30 IDIOTIC I _

e RETROSPECT 7
7 w8 : /
?

A Better Way

e Idea: Keep temporaries in the AR

e Work: The code generator must assign
space in the AR for each temporary

PHENOMENALCOSMICIPOVVAH!

itty,bitty living'space

#51

Example

def fib(x) = if x =1 then 0 else
if x =2 then 1 else
fib(x - 1) + fib(x - 2)

e We must determine;

- What intermediate values are placed on the
stack?

- How many slots are needed in the AR to hold
these values?

#52

Trivia: Physics

» Rosalind Franklin and Raymond "# & =
Gosling's famous “Photo 51”7 is
an X-ray diffraction image of
the structure of what? James Watson was
shown the photo without Franklin's approval;
along with Francis Crick, Watson used the
photo to develop a particular chemical
model. Franklin died in 1958 while Watson
and Crick were awarded a Nobel Prize in
Physiology or Medicine in 1962.

How Many Temporaries?

e Let NT(e) = # of temps needed to eval e
D
« Example: NT(e, + e,) @

cgen(e1)
mov temp <-r1
cgen(e2)
addr1 <-r1 temp
/

- Needs at least as many temporaries as NT(e,)
- Needs at least as many temporaries as NT(e,) + 1

« Space used for temporaries in e, can be
reused for temporaries in e,

#54

The NumTemps Equations

NT(e, + e,)= max(NT(e,), 1 + NT(e,))
NT(e, - e,) = max(NT(e,), 1 + NT(e,))
NT(if e, = e, then e, else e,)
= max(NT(e,),1 + NT(e,), NT(e;), NT(e,))
NT(id(e,,...,e.) = max(NT(e,),...,NT(e.))
NT(int) =0
NT(id) =0
Is this bottom-up or top-down? (you tell me)
What is NT(...code for fib...)?

#55

The Revised AR

« For a function definition f(x,,...,x) = e the
AR has n + NT(e) + 2 elements (so far)
- n arguments
- NT(e) locations for intermediate results
- Return address
- Frame pointer

| defragged my zebra

~ #56

Stack Frame Picture

f(x,, x)=e
SP

Temp NT(e)

Temp 1
FP RA

high
addresses
#57

Revised Code Generation

e Code generation must know how many
temporaries are in use at each point

« Add a new argument to code generation:
the position of the next available
temporary

cgen(e, n) : generate code for e and use
temporaries whose address is
(fp - n) or lower

#58

Code Generation for +

cgen(e, + e,) = cgen(e, + e,, nt) =
cgen(e,) cgen(e,,nt)
push r1 st fp[-nt] <- r1
cgen(e,) cgen(e,,nt+1)
pop temp ld temp <- fp[-nt]

add r1 <- r1 temp add r1 <-r1 temp

Where are the savings?

Hint: “push” is more expensive than it looks.

#59

Notes

e The temporary area is used like a small,
fixed-size stack

e Exercise: Write out cgen for other
constructs

e Hint: on function entry, you'll have to
increment something by NT(e)

- ... and on function exit, decrement it ...

#60

Code Generation for
Object-Oriented Languages

Object Layout

e OO implementation =
- Stuff from before + More stuff

e Liskov Substitution Principle: If B is a
subclass of A, then an object of class B
can be used wherever an object of class A
is expected

e This means that code in class A must work
unmodified on an object of class B

#62

Two Issues

« How are objects represented in memory?
e How is dynamic dispatch implemented?

#63

Object Layout (Cont.)

- An object is like a struct in C. The
reference foo.field is an index into a foo
struct at an offset corresponding to field

- Objects in Cool are implemented similarly
- Objects are laid out in contiguous memory
- Each attribute stored at a fixed offset in
object

- When a method is invoked, the object
becomes self and the fields are the object’s
attributes

#64

Cool Object Layout

e The first 3 words of Cool objects contain
header information:

Offset
Class Type Tag 0
Object Size 1
Dispatch / Vtable Ptr 2
Attribute 1 3
Attribute 2 4

(This is a convention that we made up, but it is similar to how Java and
C++ lay things out. For example, you could swap #1 and #2 without loss.)
#65

Cool Object Layout

e Class tag (or “type tag”) is a raw integer
- ldentifies class of the object (int=1, Bool=2, ...)

e Object size is an integer
- Size of the object in words

e Dispatch pointer (or “vtable pointer”) is
a pointer to a table of methods
- More later

o Attributes are laid out in subsequent slots
e The layout is contiguous

#66

Object Layout Example

Class A {

a: Int <- 0;

d: Int <- 1;

f(): Int{a<-a+d};
5

Class B inherits A {
b: Int <- 2;
f(): Int { a }; // Override
g):Int{a<-a-b};

&

Class C inherits A {

};

c: Int <- 3;
h():Int{a<-a*c};

#67

Object Layout (Cont.)

o Attributes a and d are inherited by classes
BandC

e All methods in all classes refer to a

e For A methods to work correctly in A, B,
and C objects, attribute a must be in the
same “place” in each object

#68

Subclass Layout

Observation: Given a layout for class A, a
layout for subclass B can be defined by
extending the layout of A with additional
slots for the additional attributes of B

(i.e., append new fields at bottom)
Leaves the layout of A unchanged
(B 1s an extension)

#69

Object Layout Picture

Class A {

a: Int <- 0;

d: Int <- 1;

f): Int{a<-a+d};
5

Class B inherits A {
b: Int <- 2;
f(): Int {a }; // Override
g():Int{a<-a-b};

&

Class | A B C
oriar..
O (tag) \A’rag Btag |Ctag
1 (size) 5 6 6
2 (vtable) |* * *
3 (attr#l) |a a a
4 .. d d d
5 b c

Class Cinherits A {
c: Int <- 3;

h():Int{a<-a*c};

5

#70

Subclasses (Cont.)
e The offset for an attribute is the same in
a class and all of its subclasses

- This choice allows any method for an A, to be
used on a subclass A,

« Consider layout for A, < ... <A, <A, <A

Header A object
A, attrs. A, object
A -A, attrs :
Az A1 A; object Extra Credit:
;-A, attrs
What about
multiple

inheritance? 471

Dynamic Dispatch

e Consider f and g:

Class A {

a: Int <- 0; ~ DONOT

d: Int <- 1; v ; M

Z

f(): Int{a<-a+d}
3

Enter Only

Class B inherits A {

b: Int <- 2; Class C inherits A {

f(): Int {a}; // Override c: Int <- 3;

g):Int{a<-a-b}; h():Int{a<-a*c}
5 3

#72

Dynamic Dispatch Example

+ e.g()

- g refers to methodinBifeisaB

- e.f()

- f refers to method in A if f isan A or C
(inherited in the case of C)

- f refers to method in B for a B object

 The implementation of methods and
dynamic dispatch strongly resembles the
implementation of attributes

#73

Dispatch Tables

e Every class has a fixed set of methods
(including inherited methods)

e A dispatch table (or virtual function
table or vtable) indexes these methods
- A vtable is an array of method entry points
- (Thus, a vtable is an array of function pointers.)
- A method f lives at a fixed offset in the

dispatch table for a class and all of its

subclasses
#74

Dispatch Table Example

Class | A B C
Offset
0) f A |f_B f_A
1 g h

o The dispatch table for
class A has only 1 method

e The tables for B and C
extend the table for A
with more methods

e« Because methods can be

overridden, the method
for f is not the same in
every class, but is always
at the same offset

- (i.e., offset 0 here)

#75

Using Dispatch Tables

e The dispatch pointer in an object of class
X points to the dispatch table for class X

- i.e., all objects of class X share one table

e Every method f of class X is assigned an
offset O, in the dispatch table at compile

time
- when generating the assembly code

#76

A Sense of Self

e Every method must know what object is
“self”

- Convention: “self” is passed as the first
argument to all methods
e To implement a dynamic dispatch e.f() we
- Evaluate e, obtaining an object x
- Find D by reading the dispatch-table field of x
- Call D[O.](x)

- D is the dispatch table for x

e In the call, self is bound to x
#77

Dynamic Dispatch Hint

o To reiterate: objexp.mname(arg1)

push self

push fp

cgen(arg1)

push r1 ; push arg1

cgen(objexp)

bz r1 dispatch_on_void_error

push r1 ; Will be “self” for callee

ld temp <- r1[2] ; temp <- vtable

ld temp <- temp]X] ; X is offset of mname in vtables

; for objects of typeof(objexp)
call temp

pop fp

#78

Homework

e PA3 (Parsing) Due
e RS3 Recommended
e Midterm #1

#79

	More Static Semantics
	Slide 2
	One-Slide Summary
	Slide 4
	Stack Machines
	Example of a Stack Machine Program
	Stack Machine. Example
	Why Use a Stack Machine ?
	Slide 9
	Optimizing the Stack Machine
	Stack Machine with Accumulator
	Stack Machine with Accumulator. Example
	A Bigger Example: 3 + (7 + 5)
	Notes
	Slide 15
	Slide 16
	From Stack Machines to MIPS
	Slide 18
	Slide 19
	Simulating a Stack Machine…
	Slide 21
	Slide 22
	MIPS Assembly. Example.
	Some Useful Macros
	A Small Language
	A Small Language (Cont.)
	Code Generation Strategy
	Code Generation for Constants
	Code Generation for Add
	Code Generation for Add. Wrong!
	Code Generation Notes
	Code Generation for Sub and Constants
	Code Generation for Conditional
	Code Generation for If (Cont.)
	Slide 35
	The Activation Record
	The Activation Record (Cont.)
	Slide 38
	Code Generation for Function Call
	Code Generation for Function Call (Cont.)
	Code Generation for Function Definition
	Calling Sequence. Example for f(x,y).
	Code Generation for Variables
	Code Generation for Variables (Cont.)
	Slide 45
	Summary
	Slide 47
	Slide 48
	Review
	Review (Cont.)
	A Better Way
	Example
	Slide 53
	How Many Temporaries?
	The Equations
	The Revised AR
	Picture
	Revised Code Generation
	Code Generation for + (original)
	Slide 60
	Slide 61
	Object Layout
	Two Issues
	Object Layout (Cont.)
	Cool Object Layout
	Cool Object Layout (Cont.)
	Object Layout Example
	Slide 68
	Subclasses
	Layout Picture
	Subclasses (Cont.)
	Dynamic Dispatch
	Dynamic Dispatch Example
	Dispatch Tables
	Dispatch Table Example
	Using Dispatch Tables
	Using Dispatch Tables (Cont.)
	Slide 78
	Homework

