Lexical Analysis

Finite Automata

(Part 1 of 2)

HOCUS-POCUS, I COMMAND My
@ACADABRA!) 0 DO \TSEL&‘?MENORK

¥ HOMEWORK, BE DONE !
I
N ("S

Cunning Plan

o Informal Sketch of Lexical Analysis
- LA identifies tokens from input string
- lexer : (char list) = (token list)

e Issues in Lexical Analysis
- Lookahead
- Ambiguity

e Specifying Lexers
- Regular Expressions
- Examples

#2

One-Slide Summary

e Lexical analysis turns a
stream of characters into a
stream of tokens.

e Regular expressions are a
way to specify sets of strings.
We use them to describe
tokens.

#3

Interpreter and Compiler
Structure

Optimization
(Interpreter

l (Compiler)

Code
Generation

#4

Lexical
Analysis

Detail: Modern Reality
PA2 PA3

Lexical Analysis

« What do we want to do? Example:
if (1 ==])
z =0;
else
zZ=1;
e The input is just a sequence of characters:
if (i == j)\n\tz = 0;\nelse\n\tz = 1;
e Goal: partition input strings into substrings
- And classify them according to their role

#6

What's a Token?

e Output of lexical analysis is a list of tokens

e A token is a syntactic category
- In English:
e Noun, verb, adjective, ...
- In a programming language:
o ldentifier, Integer, Keyword, Whitespace, ...
e Parser relies on token distinctions:

- e.g., identifiers are treated differently than
keywords

#7

Tokens

e Tokens correspond to sets of strings.

o Ildentifier: strings of letters or digits, starting
with a letter

e Integer: a non-empty string of digits
 Keyword: “else” or “if” or “begin” or ...

 Whitespace: a non-empty sequence of
blanks, newlines, and/or tabs

e OpenPar: a left-parenthesis

#8

Lexical Analyzer: Build It!

 An implementation must do two things:
» Recognize substrings corresponding to tokens
» Return the value or lexeme of the token

- The lexeme is the substring

a Molly Struve P}
2 @molly_struve

Developer accused of unreadable

code refuses to comment
1:18 AM - 21 Jan 20 - Twitter Web App

4,393 Retweets 208 Quote Tweets 17K Likes
#9

Example

e Recall:
if (1 == j)\n\tz = O;\nelse\n\tz = 1;
e Token-lexeme pairs returned by the lexer:

- <Keyword, “if”>
- <Whitespace, “ 7>
- <OpenPar, “”>
- <ldentifier, “7>
- <Whitespace, “ 7>
- <Relation, “=="">

€&

- <Whitespace, >

#10

Lexical Analyzer: Implementation

e The lexer usually discards “uninteresting”
tokens that don't contribute to parsing.

o Examples: Whitespace, Comments

- Exception: which language cares about
whitespace?

e Question: What happens if we remove all
whitespace and comments prior to lexing?

g, Failed to print document
@ Printing is not supported on this printer.

Close
I - B G | % #11

Lookahead

e The goal is to partition the string. That is
implemented by reading left-to-right,
recognizing one token at a time.

« Lookahead may be required to decide where
one token ends and the next token begins
- Even our simple example has lookahead issues
- jvs. if

- = VS, ==

#12

Still Needed

e A way to describe the
lexemes of each token
- Recall: lexeme = “the

substring corresponding
to the token”

e A way to resolve
ambiguities
- Is if two variables i and f?
- Is == two equal signs = =? FACT

You never get away with pretend writing.

Languages

e Definition. Let 2 (“sigma”) be a
set of characters. A language
over 2 is a set of strings of
characters drawn from Z Z IS
called the alphabet. [=7=""

Examples of Languages

e Alphabet = English Characters

e Language = English Sentences

- Note: Not every string on English characters is an
English sentence.

- Example: xayenb sbe’
e Alphabet = ASCII characters
e Language = C Programs

- Note: ASCII character set is different from English
character set.

#15

Notation

e Languages are sets of strings

 We need some notation for specifying which
sets we want

- that is, which strings are in the set

e For lexical analysis we care about regular
languages, which can be described using
regular expressions.

#16

Regular Expressions

e Each regular expression is a notation for a
regular language (a set of words)

- You'll see the exact notation in minute!

e If Ais a regular expression then we write L(A)
to refer to the language denoted by A

% Jakob %% \u0000
ps @jcsrb

6 hours of debugging can save
you 5 minutes of reading
documentation

#17

Base Regular Expression

e Single character: 'c
- L(c)={“c”} (for any c €2)
e Concatenation: AB
- A and B are other regular expressions
- L(AB) ={ab | a €L(A) and b €L(B) }
o Example: L(7" f) ={ “if” }
- We abbreviate 7' 'f' as 'if’

#18

Compound Regular Expressions

e Union
- L(A | B)={s | s ELA) or s EL(B)?}

e Examples:
- L(f" | 'then’ | ‘else’) = { “if”, “then”, “else” }
- L(O|"M7172°1'3"|'4'|'5'|'6'|'7''8"|'9) = what?

e Fun Example:
_ L(('O'|'1') ('O'|'1')) — {“OO”,”O1 ”,”10”,”11”}

#19

Starz!

e So far we have only finite languages

e Iteration: A*
- L(A*) = {“"} UL(A) UL(AA) UL(AAA) ...

o Examples:
- L('0™) = {*“”, “07”, “00”, “000, “00007, ...}
- L(170%) = {“17, “10”, “100”, “1000”, ...}

e Empty: € Pr———
_ L(E) _ { 6 } Help and Support

Help and Support Home Select a Product | Advance d Search

Error Message: Your Password Must Be at Least 18770
Characters and Cannot Repeat Any of Your Previous
30689 Passwords

Q: Advertising (810 / 842)

e The United States
Forest Service's ursine

mascot first appeared
in 1944. Give his catch-
phrase safety message.

Natural Languages

e These languages, of which there are about
250, are often mutually intelligible and
constitute a major branch of the Niger-Congo
languages. They are spoken largely in central,

east and southern Africa. Popular examples
include Swahili, with 80 million speakers,
Shona, with 11 million, and Zulu, with 10
million. They commonly use words such as
muntu or mutu for “person”. Words such as
bongos, chimpanzee, gumbo, jumbo, mambo,
rumba and safari come from these languages.

Education

e This private liberal arts college
is transitively associated with
Uncle Tom's Cabin, an

expedition to the North Pole,
quality dining, and former
president Franklin Pierce.

Example: Keyword

o Keyword: “else” or “if” or “begin” or ...

‘else’ | if' | 'begin’ | ...
(Recall: ‘else’ abbreviates ‘e 'l 's" 'e’)

I You have entered invalid data in your Security Image
Please do not use any of the following characters or words: 'SELECT FROM' 'DELETE
FROM' "UPDATE SET" "INSERT INTO' DROP NULL .. --

Example: Integers

e Integer: a non-empty string of digits
digit="0"]1"1" |72 1314

S [6 [7|89
number = digit digit*

Abbreviation: A+ = A A*

#25

Example: ldentifier

e Identifier: string of letters or digits, starting
with a letter

letter="A"| ... | Z |da|...|Z

ident = letter (letter | digit)*

Is (letter® | digit®) the same?

#26

Example: Whitespace

 Whitespace: a non-empty sequence of blanks,
newlines, and tabs

(1N]\ +
or
(1NN +

#27

Example: Phone Numbers

e Regular expressions are everywhere!
e Consider: (434) 924-1021

2 = {O’ 1) 2: 3: XXP 9’ (a)’ '}
area = digit digit digit
exch = digit digit digit

phone = digit digit digit digit
number ='("area’)' exch '-' phone

#28

Example: Email Addresses

o Consider w.weimer@bowdoin.edu

3 ={a, b, ..., z, ., @}

name = letter+

address = name '@’ nhame ('." name)*

W Thunderbird thinks this message is junk.

Welcome to Thunderbird!

Mozilla's Thunderbird email application is more powerful than ever. It's now
even easier to organize, secure and customize your mail.

Experience the difference. Thunderhird is developed and supported by Mozilla, a global communit
Internet a hetter place for everyone

Far frequently asked questions, tips and general help, visit Thunderbird Help Center

Far product information, visit the Thunderbird Home Page

#29

mailto:w.weimer@bowdoin.edu

Regexp Summary

e Regular expressions describe many useful
languages

e Next: Given a string s and a regexp R, is
s €L(R)
e But a yes/no answer is not enough!
e Instead: partition the input into lexemes
 We will adapt regular expression to this goal

#30

Subsequent Outline

e Specifying lexical structure using regexps
e Finite Automata

- Deterministic Finite Automata (DFAs)
- Non-deterministic Finite Automata (NFAs)

o Implementation of Regular Expressions
- Regexp -> NFA -> DFA -> Tables

- The tables are the heart of the lexer, which is just
a while loop that takes in the current input
character and looks up the new state in the

transition table.
#31

Lexical Specification (1)

e Select a set of tokens
- Number, Keyword, Identifier, ...
e Write a regexp for the lexemes of each token
- Number = digit+
- Keyword = if’ | ‘else’ | ...
- ldentifier = letter (letter | digit) *
- OpenPar ='(’

#32

Lexical Specification (2)

e Construct R, matching all lexemes for all
tokens:

R = Keyword | Identifier | Number
R =R1 | R2 | R3

e Fact: if s €L(R) then s is a lexeme
- Furthermore, s €L(Rj) for some j
- This j determines the token that is reported

#33

Lexical Specification (3)

Let the input be x_ ... X

n

- Each X is in the alphabet 2
For 1 <i =n, check
- X, ... X €L(R)

I so, It must be that
- X ... X € L(Rj) for some}j

Remove X ... x fromthe input and restart

#34

Lexing Example

« R = Whitespace | Integer | Identifer | Plus
e Parse “f +3 +g”
- “f” matches R, more precisely Identifier

- matches R, more precisely Whitespace
- “+” matches R, more precisely Plus

- The token-lexeme pairs are
o In the future, we'll just
- <ldentifier, “f”> drop whitespace.

- <Whitespace, “ “>

“ ”

- <Plus, 435

Ambiguities (1)

e There are ambiguities in the algorithm
e Example:
- R = Whitespace | Integer | Identifier | Plus

e Parse “foo+3”
- “f” matches R, more precisely ldentifier

- But also “fo” matches R, and “foo”, but not
“fOO'l'”

« How much input is used?

- Maximal Munch rule: Pick the longest possible
substring that matches R

#36

Ambiguities (2)

« R = Whitespace | 'new' | Integer | ldentifier
e Parse “new foo”

- “new” matches R, more precisely 'new’
- but also Identifier - which one do we pick?

e In general, use the rule listed first.
- No, really.

e S0 we must list 'new’ (and other keywords)
before ldentifier.

#37

Error Handling

« R = Whitespace | Integer | Identifier | '+
e Parse “=56"
- No prefix matches R: not “=", nor “=5", nor “=56"
e Problem: we can't just get stuck and die
e Solution:
- Add a rule matching all “bad” strings
- Put it last

e Lexer tools allow the writing of:
-R=R1 | R2]| ... | Rn| Error

#38

Summary oo

Demo?

e Regular expressions provide a concise
notation for string patterns

e Their use in lexical analysis requires small
extensions

- To resolve ambiguities
- To handle errors

e Good algorithms known (next)
- Requiring only a single pass over the input
- And few operations per character (table lookup)

#39

	Lexical Analysis Finite Automata (Part 2 of 2)
	Summary
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Q: Advertising (810 / 842)
	Slide 22
	Q: Music (150 / 842)
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

