History of Programming Languages

Functional Programming

E
E

BEFoRE I HAND oUT
THE READING LIST, 15
THERE ANYONE HERE

__+ WITH CPR TRAINING?

e e S
o e R S S e

I'VvE GoT A BAD
FEELING ABOUT
THIS CLASS. 1/
R
)
5

e

i

el

C e

+++++
+++++++
+++++
+++++

Cunning Plan

e History Lesson
e Functional Programming
- OCaml
- Types
- Pattern Matching
- Higher-Order Functions
e Basic Syntax
e Data Structures

e Higher-Order Functions
- Fold

#2

One-Slide Summary

e Imperative: change state, assignments

o Structured: if/block/routine control
flow

e Object-Oriented: message passing (=
dynamic dispatch), inheritance

» Functional: functions are first-class
citizens that can be passed around or
called recursively. We can avoid
changing state by passing copies.

#3

Why Study History?

e Those who cannot remember George
Santayana are condemned to misquote
him.

- Supernatural, 1999

#4

Why Study History?

e Progress, far from consisting in change,
depends on retentiveness. Those who cannot
remember the past are condemned to repeat
it.

- George Santayana, Life of Reason: Vol. |,
Reason and Common Sense, 1905-1906.

e Through meticulous analysis of history | will
find a way to make the people worship me. By
studying the conquerors of days gone by, I’ll
discover the mistakes that made them go
awry.

- The Brain, A Meticulous Analysis of History

Rebels kill 41 in South Sudan cattle raid

. REUTERS October 20, 2013 1:38 PM

JUBA (Reuters) - Rebels in South Sudan's volatile Jonglei state killed at least 41 people and wounded 46 others
in a raid on three cattle camps on Sunday, a local official said.

Since breaking from Sudan in 2011, cil-producing South Sudan has struggled to assert control over remote
territories awash with weapons after a 1983-2005 war with the north and torn by ethnic rivalries.

Dau Akoi, commissioner of Twic East, a county in Jonglei, said rebels loyal to former theology student David
Yau Yau were believed to be behind the attack.

Yau Yau last year recruited armed youths antagonized by a government campaign to end tribal violence in
Jonglei, which human rights groups say was marked by abuses by soldiers.

More than 1,500 people have been killed in Jonglei since independence, according to the United Nations. Yau
Yau has refused President Salva Kiir's offer of amnesty.

Akoi said all the cattle were taken in the raid that killed 41 people and wounded 46.

(Reporting by Andrew Green; Writing by Drazen Jorgic; Editing by Alison Williams)

#6

*19 April 2014 Last updated at 1737 ET I] E =

South Sudan cattle raid 'claims dozens of
lives'

Cattle raids and revenge attacks have claimed thousands of lives since 2011

Dozens of people have been killed in a cattle raid in South

Sudan’'s northern Warrap state, local officials say. gif:'li'lftg Sudan

Around 28 civilians died during the attack on a remote herders' camp,]
state information minister Bol Dhel told South Sudanese media. Unhappy birthday

In pictures: Threat

#7

Sudan: UN Condemns Killing
of 28 Civilians During Cattle

Raid

Jonglei and the Greater Pibor Administrative Area often experience retaliatory violence,
involving cattle raiding, revenge killings and child abduction. Jan. 9, 2024. | Photo:

X/@sndwky

» Published 9 January 2024
. Comments

A Fa

The UNMISS reaffirmed its commitment to civilian protection and durable

peace across the country.

The United Nations Mission in South Sudan (UNMISS) condemned the violence
that resulted in nearly 28 civilian deaths last week in Duk County of Jonglei State.

RELATED:
Sudan: UN Chief
Calls for

Local authorities in Jonglei State attributed the
attack, which left about 19 people wounded, to
armed Murle youth from the neighboring Greater
Pibor Administrative Area.

#8

Surprise Liberal Arts Trivia

e The Ulster Cycle (or Red Branch Cycle) is
one of the four great sagas of this country's
mythology. It includes prominent figures such
as Cu Chulainn and queen Méabh, as well as
the tragic Deirdre (source of Yeats and Synge
plays). The earliest of the stories available is
dated to the 8™ century and refers to events
and characters of the 7™.

So What's It About?

o The longest and most important story of the cycle is the
Tain Bo Cuailnge or "Cattle Raid of Cooley", in which
Medb raises an enormous army to invade the Cooley
peninsula and steal the Ulaid's prize bull [...] Warfare
mainly takes the form of cattle raids [...] Cu Chulainn

[...] staves off Medb's army for months, slaying every
champion the queen sends to meet him. [...] Medb, of
course, is not finished with Cu Chulainn, and seeks her
revenge on him through more trickery.

- Wikipedia and others, emphasis mine

In order words: “A deadly cycle of cattle raids and
revenge attacks between some of the country's groups.”

One Reason Why

Reason is a biological product -- a tool whose power is inherently and
substantially restricted. It has improved how we do things; it has not
changed why we do things. Reason has generated knowledge enabling us
to fly around the world in less than two days. Yet we still travel for the
same purposes that drove our ancient ancestors -- commerce, conquest,
religion, romance, curiosity, or escape from overcrowding, poverty, and
persecution. To deny that reason has a role in setting our goals seems, at
first, rather odd. A personal decision to go on a diet or take more
exercise appears to be based upon reason. The same might be said for a
government decision to raise taxes or sign a trade treaty. But reason is
only contributing to the 'how' portion of these decisions; the more
fundamental ‘why' element, for all of these examples, is driven by
instinctive self-preservation, emotional needs, and cultural attitudes. We
are usually reluctant to admit the extent to which these forces govern
our behavior, and accordingly we often recruit reason to explain and
justify our actions.

- Donald B. Calne, Within Reason: Rationality and Human Behavior

#11

| invented the term Object-

“Modern 4 Era Oriented, and | did not have

C++ in mind. - Alan Kay

e 1972 -C Systems programming, ASM
e 1983 - Ada US DOD, static type safety
e 1983 - C++ classes, default args, STL

e 1987 - Perl dynamic scripting language
e 1990 - Python interp OO + readability

e 1991 - Java portable OO lang (for iTV)
e 1993 - Ruby Perl + Smalltalk

e 1996 - OCaml ML + C++

e 2000 - C# “simple” Java + delegates

#12

Time Travel

e Back to an earlier
time when the US
was worried about a
Communist “perfect
attack”

DAVICE-

1 DVICE-

" SOCIALIST
REVOLUTION

3\

=

- Y,
w

~ 11 .':}

L3
a
v W

B 1.

LEXT U5 GETSK SUSY, COMRADE

)R
&,
The Land Before Time ‘{3"

e Senator Joseph McCarthy 1950
- "l have here in my hand a list of 205 —

a list of names ...” ARTHUR
e John McCarthy 1958 M_II-I-ER

'THE CRUCIBLE

- LISP = List Processing Language

- basic datatype is the List, programs
themselves are lists, can self-
modify, dynamic allocation,
garbage collection (!), functional

There are only two kinds of | fear the new OO systems may suffer the
programming languages: those people fate of LISP, in that they can do many

always [complain] about and those things, but the complexity of the class
nobody uses. hierarchies may cause them to collapse
- Bjarne Stroustrup under their own weight.
- Bill Joy
FORTRAN '54

Object-
Oriented

COBOL '59 ALGOL '60 Structured LISP'58
\‘ / \JmperatV

PASCAL 70 C'72 ML '73 SMALLTALK "72

\

ADA '3

Computer language design
is just like a stroll in the
park. Jurassic Park, that is.
- Larry Wall

PERL '87

~

PYTHON "90

JAVA'91

/

C# 2000

Oh what a tangled web we weave, \
When first we practise to deceive! RUBY 95
- Sir Walter Scott, 1771-1832 #15

Functional Programming

e OO and Structured Imperative are common

e Functional Programming
- Computation = evaluating (math) functions
- Avoid “global state” and “mutable data”
- Get stuff done = apply (higher-order) functions
- Avoid sequential commands

e Important Features
- Higher-order, first-class functions
- Closures and recursion
- Lists and list processing

#16

State

e The state of a program is all of the current
variable and heap values

« Imperative programs destructively modify
existing state

SET {X}l add_elem(SET, y)

#17

State

e The state of a program is all of the current
variable and heap values

 Imperative programs destructively modify
existing state
SET {x, y}l

#18

State

e The state of a program is all of the current
variable and heap values

 Imperative programs destructively modify
existing state
SET {x, y}l

« Functional programs yield new similar states

over time
SET_2 = add_elem(SET_1, y)

SET 1 {x}l

#19

e The state

State

of a program is all of the current

variable and heap values
« Imperative programs destructively modify

existing state

SET {x,y}l

« Functional programs yield new similar states

over time

SET_2 = add_elem(SET_1, y)

SET 1 {x}l

-------------------------- > SET_Z {X)y}l

#20

Basic OCaml
e Let's Start With C

double avg(int x, int y) {
double z = (double)(x + y);
z=2z/2;
printf(“Answer is %g\n”, z);
return z;

}

#21

Basic OCaml

e Let's Start With C

double avg(int x, int y) {
double z = (double)(x + y);
z=2z/2;
printf(“Answer is %g\n”, z);
return z; et avg (x:int) (y:int) : float = begin

}

end

#22

Basic OCaml
e Let's Start With C

double avg(int x, int y) {
double z = (double)(x + y);

z=12]2;

printf(“Answer is %g\n”, z);

return z; et avg (x:int) (y:int) : float = begin
} let z = float_of _int (x + y) in

end

#23

Basic OCaml
e Let's Start With C

double avg(int x, int y) {
double z = (double)(x + y);
z=2]/2;
printf(“Answer is %g\n”, z);

return z; ot avg (x:int) (y:int) : float = begin

} let z = float_of int (x +y) in
letz=2z/.2.0in

end

#24

Basic OCaml
e Let's Start With C

double avg(int x, int y) {
double z = (double)(x + y);

z=2/2;

printf(“Answer is %g\n”, z);

return z; et avg (x:int) (y:int) : float = begin
} let z = float_of int (x +y) in

letz=2z/.2.0in
printf “Answer is %g\n” z ;

end

#25

Basic OCaml
e Let's Start With C

double avg(int x, int y) {
double z = (double)(x + y);

z=2]/2;
printf(“Answer is %g\n”, z);
return z; ot avg (x:int) (y:int) : float = begin
} let z = float_of int (x +y) in
letz=2z/.2.0in
printf “Answer is %g\n” z ;
y

end

#26

The Tuple (or Pair)

let x = (22, 58) in (* tuple creation *)

let y, z = x in (* tuple field extraction *)
printf “first element is %d\n” vy ; ...

let add_points p1 p2 =
let x1, y1 = p1in
let X2, y2 = p2in
(x1 +x2, y1 +y2)

#27

List Syntax in OCaml

e Empty List []

e Singleton [element]

e Longer List [e1;e2;e3]

e Cons X :: [y;z] = [X;Y;Z]

» Append [wix]@[y;z] = [w;x;y;Z]

e List.length, List.filter, List.fold, List.map ...
e More on these later!
e Every element in list must have same type

#28

Functional Example

e Simple Functional Set (built out of lists)
let rec add_elem (s, e) =
if s =[] then [e]
else if List.hds = e thens
else List.hd s :: add_elem(List.tl s, e)

e Pattern-Matching Functional (same effect)
let rec add_elem (s,e) = match s with

[1-> [e]

hd :: tlwhene =hd ->s

hd :: tl -> hd :: add_elem(tl, e)

#29

Imperative Code

e More cases to handle
List* add_elem(List *s, item e) {

if (s == NULL)
return list(e, NULL); | have stopped reading Stephen
else if (S->hd == e) King novels. Now | just read C
) code instead.
return s; - Richard O’Keefe

else if (s->tl == NULL) {

s->tl = list(e, NULL); return s;
} else

return add_elem(s->tl, e);

3

#30

Real-World Languages

e This Indo-European language spans
34 centuries of written records. It
arose from Phoenician and in turn
served as the basis for Latin and
Cyrillic. It boasts a number of
Western canon works, including the
Odyssey, Iliad, Platonic dialogues,
and Christian New Testament.

Functional-Style Advantages

e Tractable program semantics
- Procedures are functions
- Formulate and prove assertions about code
- More readable

« Referential transparency

- Replace any expression by its value without
changing the result

e No side-effects
- Fewer errors

#32

Functional-Style Disadvantages

Language Slow Space
. . C (gcc) 1.0 1.1
° Eff]C]enCy C++ (g++) 1.0 1.6
- Copying takes time oCaml 1.5 | 2.9
C . l . l t t . Java (JDK -server) 1.7 9.1
o LOMPIEr imptementation Lisp — >
- Frequent memory allocation| c# (meno) 2.4 |5.6
e . Python 6.5 3.9
o Unfamiliar (to you!) 5 50
- New programming style 17 small benchmarks

e Not appropriate for every program
- Operating systems, etc.

#33

ML Innovative Features

° Type system There are many ways of trying to

understand programs. People often rely

B Strongly typed too much on one way, which is called
_ Type inference “debugging” and consists of running a
. partly-understood program to see if it
- Abstraction does what you expected. Another way,
which ML advocates, is to install some
¢ MOdUleS means of understanding in the very
programs themselves.
° Patterns - Robin Milner, 1997

e Polymorphism
e Higher-order functions
e Concise formal semantics

#34

Types

e A type is a conservative over-approximation
of the set of values an expression could
possibly take on at run-time.

- If x+3 has type Int, then x+3 could evaluate to 7
or -2 or 5102 at run-time, but not “Hello” or 1.2

e To say that expression E has type T, we write:
E: T
e Types help us find bugs early

- Requiring types to match up can rule out bad
programs without even having to test them!

#35

Why Catch Bugs Early?

F Y
Cost to

Correct

Phase Thata
Defect Is Created

FEegquirements

Architecture

Detailed design

Cotstaction

Fequirements Architecture Detailed Construction Iflaintenance
design

Phase That a Defect Is Corrected

Copymight 1995 Steven C. vk Connell. Reprinted with perrussion
from Soffware Froject Survival Guide (Ivlicrosoft Press, 1992, #36

Efficiency:
Defect Cost vs. Detection Time

e An IBM report gives an average defect repair
cost of

- $25 during coding
- $100 at build time debugglng

[de-buhg-ing | -v

- $450 during testing/QA | being e detectvein re mo

where you Ihmd

- $16,000 post-release

#37

Type System

e Type Inference

let rec add_elem (s,e) = match s with
[]->[e]
hd :: tilwhene =hd ->s
hd :: tl -> hd :: add_elem(tl, e)
val add_elem : a list * a -> o list

- oo means “works for any type (your choice)”
- “o list” means “List<T>” or “List<o>"
e ML infers types: inconsistent types are errors

e Optional type declarations (exp : type)

- Clarify ambiguous cases, documentation 438

Pattern Matching

o Simplifies Code (eliminates ifs, accessors)

type btree = (* binary tree of strings *)

| Node of btree * string * btree

| Leaf of string
let rec height tree = match tree with

| Leaf _ -> 1

| Node(x,_,y) -> 1 + max (height x) (height y)
let rec mem tree elt = match tree with

| Leaf str -> str = elt

| Node(x,str,y) -> str = elt | |

mem x elt | | memy elt
#39

Pattern Matching Mistakes

e What if | forget a case?
let rec is_odd x = match x with
0 -> false
2 -> false
X when x > 2 -> is_odd (x-2)

- Warning: this pattern-matching is not
exhaustive.

- Here is an example of a value that is not
matched: 1

#40

Polymorphism

e Functions and type inference are
polymorphic

- Operate on more than one type
let rec length x = match x with
| [1->0

| hd :: tl -> 1 + length t
val length : a list -> int

engt
engt
engt

N
N

N

1;2;3] = 3

o means “any
'- one type”

“algol”; ”smalltalk”; "ml”] = 3

1 ; “algol”

=7

#41

Higher-Order Functions

o Function are first-class values

- Can be used whenever a value is expected
- Notably, can be passed around
- Closure captures the environment
let rec map f Ist = match st with
| [1->[] fis its.elfa
| hd :: tl -> f hd :: map f tl function:
val map : (a -> B) -> a list -> B list
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int
map myfun [1;8;22] =[11;18;32]
o Extremely powerful programming technique
- General iterators
- Implement abstraction

#42

e« Can we build all of these?

The Story of Fold

 We’ve seen length and map
e We can also imagine ...

sum 1;5; 8]
product 1; 5; 8]

and true; true; fa
or true; true; fa
filter (fun x -> x>4)
reverse [1; 5; 8]

mem 5[1; 5; 8]

=14

= 40
se] = false
se | = true

1; 5; 8] =[5; 8]
= [8; 5; 1]
= true

#43

The House That Fold Built

e The fold operator comes from Recursion
Theory (Kleene, 1952)

let rec fold f acc (st = match (st with
| []->acc
| hd :: tl -> fold f (f acc hd) tl
valfold: (a->B->a)->a -> B list -> a
e Imagine we’re summing a list (f = addition):

acc st
9207045 | - [[ZP4b5H)

PR |
18] [4P[5]{] - [27]

#44

It’s Lego Time

e Let’s build things out of Fold!

- length Ist = fold (fun acc elt -> acc + 1) O st

- sum st = fold (fun acc elt -> acc + elt) O st

- product lst=fold (fun acc elt -> acc * elt) 1 st

-and st = fold (fun acc elt -> acc & elt) uet
» How would we do or? P P
o How would we do reverse? £ & @ .

Tougher Legos

e Examples:
- reverse st = fold (fun acc e -> acc @ [e]) [] Ist
« Note typing: (acc : a list) (e : a)
- filter keep_it lst = fold (fun acc elt ->
- if keep_it elt then elt :: acc else acc) [] st
- mem wanted st = fold (fun acc elt ->
- acc | | wanted = elt) false lst
« Note typing: (acc : bool) (e : a)
« How do we do map?
- Recall: map (fun x -> x +10) [1;2] = [11;12]
- Let’s do it together ...

#46

Map From Fold

let map myfun st =
fold (fun acc elt -> (myfun elt) :: acc) [] st

) Tyaes: (myfun . -2 B) Do nothing which is of no use.
_ Ty hes: (lSt * o liSt) - Miyamoto Musashi, 1584-1645

- Types: (acc : B list)

- Types: (elt : a)
« How do we do sort?
(sort : (o * o -> bool) -> a list -> o list)

#47

Sorting Examples

langs = [“fortran”; “algol”; “c”]

courses = [216; 333; 415]

sort (funab -> a < b) langs

- [“algol”; “c”; “fortran”] Java uses

sort (funab ->a > b) langs Inl}f)rr fil;;:ses
- [“fortran”; “c”; “algol”] '

sort (fun a b -> strlen a < strlen b) langs
- [“c”; “algol”; “fortran”]

sort (fun a b -> match is_odd a, is_odd b with
true, false -> true (* odd numbers first)
false, true -> false (* even numbers last)

_, _->a < Db (* otherwise ascending *)) courses
- [333;415;216]

#48

Partial Application and Currying

let myadd xy =x+vy

val myadd : int -> int -> int
myadd 3 5 =8

let addtwo = myadd 2

- How do we know what this means? We use referential
transparency! Basically, just substitute it in.

val addtwo : int -> int
addtwo 77 =79

e Currying: “if you fix some arguments, you
get a function of the remaining arguments”

#49

Broadly Available

o ML, Python and Ruby all support functional
programming

- closures, anonymous functions, etc.

e ML has strong static typing and type inference
(as in this lecture)

« Ruby and Python have “strong” dynamic typing
(or duck typing)

e All three combine OO and Functional
- ... although it is rare to use both.

#50

Homework

e For Today You Already Read:

- Cool Reference Manual

- CD Chapter

- Backus paper on Speedcoding
e For Next Time

- Textbook Chapter

- Online Videos

- Optional Reading (it's good for you!)
e PA1c due Tuesday

#51

	History of Programming Languages Functional Programming
	Cunning Plan
	Gone In Sixty Seconds
	Why Study History?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Modern Era
	Slide 13
	Slide 14
	Slide 15
	Functional Programming
	State
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	List Syntax in OCaml
	Functional Example
	Imperative Code
	Slide 31
	Functional-Style Advantages
	Functional-Style Disadvantages
	ML Innovative Features
	Slide 35
	Slide 36
	Slide 37
	Type System
	Pattern Matching
	Pattern Matching Mistakes
	Polymorphism
	Higher-Order Functions
	The Story of Fold
	The House That Fold Built
	It’s Lego Time
	Tougher Legos
	Map From Fold
	Sorting Examples
	Partial Application and Currying
	Applicability
	Homework

