
#1

Principles of Principles of
Programming LanguagesProgramming Languages

Wes Weimer
TR 2:50 – 4:15, Searles 223

w.weimer@bowdoin.edu

mailto:w.weimer@bowdoin.edu

#2

Honestly

• It's going to be an awesome exploration …

#3

Cunning Plan
• Administrivia

– Webpage, Wes

• What Is This Class About?
• Easy or Hard? Work and Grading.
• Understanding a Program in Stages

#4

Course Home Page

• Find via Canvas or Piazza
• https://weimer.github.io/csci2320/index.html
• Lectures slides are available before class

– You should still take notes! (citation next)

• Assignments are listed
– also grading breakdown, regrade policies, etc.

• We make heavy use of the class forum

https://weimer.github.io/csci2320/index.html

#5

Please Ask Me To Support Claims!

“…students who took notes on laptops
performed worse on conceptual questions
than students who took notes longhand. We
show that whereas taking more notes can be
beneficial, laptop note takers’ tendency to
transcribe lectures verbatim rather than
processing information and reframing it in
their own words is detrimental to learning.”

[Pam Mueller, Daniel Oppenheimer. The pen is mightier than the keyboard:
advantages of longhand over laptop note taking. Psychol. Sci. 2014 Jun;
25(6):Epub 2014 Apr 23.]

#6

Programming Languages
Course Goals

• At the end of this course, you will be
acquainted with the fundamental concepts in
the design and implementation of high-level
programming languages. In particular, you
will understand the theory and practice of
lexing, parsing, semantic analysis, and code
interpretation. You will also have gained
practical experience programming in
different languages.

#8

Who Cares?
• In most cases, there is a clear mapping

between CS classes and jobs or internships:
• Take Databases work at Oracle→
• Take OS work at Microsoft→
• Take Financial ML work in FinTech→
• Take PL ??? →

• Which companies develop compilers or
interpreters?

#9

Microsoft

• Visual Studio, Excel, etc.

#10

Oracle

• Java Compiler, Java Virtual Machine

#11

Intel

• ICC

#12

Google

• Go, Dart, etc.

#13

Wind River, Green Hills

• Embedded!

#15

Adobe

• Photoshop contains interpreters ...

#16

Mozilla

• SpiderMonkey JavaScript Engine

#17

Apple
• Objective-C. LLVM.

#18

Games

• Unreal Engine: Blueprints Scripting

#20

Compilers and Interpreters

• Back End Optimization, Chips, etc.
– Intel, AMD, nVidia, Green Hills, etc.

• Platform Vendors
– Apple, Oracle, etc.

• Tooling, IDEs
– Microsoft, Google, etc.

• Domain-Specific Languages
– Photoshop, Game Studies, MATLAB, SQL, Wolfram

Alpha, etc.

#23

Who Cares?

• The computer is unique among “machines”
(e.g., lever, pulley, etc.) in that it magnifies
our mental force rather than our physical
force.
– Computers can assist with decision making, model

and predict outcomes, etc.

• Programming Languages are the mechanism
for communicating with and commanding the
only tool available that magnifies your mind.

#24

Plus Work, Double-Plus Easy

• Unhappiness is related to unrealized desires
or unmet expectations

• At some schools, PL is arguably the most
difficult CS course

• Principles of Programming Languages
(CSCI 2320) is approachable
– Significant theoretical component

– Significant programming component

– Generous curve and opportunities for success

#25

Course Structure
• Course has theoretical and practical aspects

– Best of both worlds!

• Need both in programming languages!
• Reading = both

– Many external and optional readings

• Review Sets = theory
– Not graded, practice problems for exams

• Programming Assignments = practice
– Electronic hand-in

• Strict deadlines but 3x “late days”
– Ask me why ...

#26

Resources

• Textbook
– Programming Language Pragmatics

– Michael L. Scott

• Video Guides
• Free Online Materials

– Udacity CS 262

• Optional Readings

#27

Academic Honesty

• Don’t use work from uncited sources
– Including old code

• We often use plagiarism detection software
• Class discussion later

– ChatGPT: allowed? No?

 PLAGIARISM

#28

LDI Course Project

• A big project: an Interpreter!
• … in four easy parts
• You may optionally work in pairs.

#29

“Explaining Unicorns & Dragons”

• Visual Studio, JVM, Exceptions, Memory,
Debugging, Linking, Shared Libraries, ...

#30

How are Languages Implemented?

• Two major strategies:
– Interpreters (take source code and run it)
– Compilers (translate source code, run result)
– Distinctions blurring (e.g., just-in-time compiler)

• Interpreters run programs “as is”
– Little or no preprocessing

• Compilers do extensive preprocessing
– Most implementations use compilers

#31

(Short) History of High-Level
Languages

• 1953 IBM develops the 701 “Defense Calculator”
– 1952, US formally ends occupation of Japan
– 1954, Brown v. Board of Education of Topeka, Kansas

• All programming done in assembly

• Problem: Software costs exceeded hardware
costs!

• John Backus: “Speedcoding”
– An interpreter
– Ran 10-20 times slower than

hand-written assembly

#32

FORTRAN I

• 1954 IBM develops the 704
• John Backus

– Idea: translate high-level code to assembly

– Many thought this impossible

• 1954-7 FORTRAN I project
• By 1958, >50% of all software is in FORTRAN
• Cut development time dramatically

– (2 weeks 2 hours)→

Set in ~1961

#33

FORTRAN I
• The first compiler

– Produced code almost as good as hand-written

– Huge impact on computer science

• Led to an enormous body of theoretical work
• Modern compilers keep the outlines of

FORTRAN I

Grace Hopper

#34

Changeups and Trivia
• “[Professors who] deliberately and

consistently interspersed their lectures with
… some other form of deliberate break …
usually commanded a better attention span
from the class, and these deliberate
variations had the effect of postponing or
even eliminating the occurrence of an
attention break”

[Johnstone and Percival. Attention breaks in lectures. Education
in Chemistry, 13. 49-50, 1976.]

[Middendorf and Kalish. The “Change–up” in Lectures. TRC
Newsletter, 8:1 (Fall 1996).]

#35

Real-World Languages

• This Indo-European language is associated
with South Asian Muslims and is the lingua
franca of Pakistan. It developed from Persian,
Arabic and Turkic influences over about 900
years. Poetry in this language is particularly
famed, and is a reported favorite of former
US President Barack Obama.

• Example: السلم علیکم

#36

Interpreters Compilers

Lexical Analysis

Parsing

Semantic Analysis

Optimization (optional)

Interpret The Program

 The first three may benefit from an analogy
to how humans comprehend English.

Lexical Analysis

Parsing

Semantic Analysis

Optimization (optional)

Generate Machine Code

Run that Machine Code

#37

Lexical Analysis

• First step: recognize words.
– Smallest unit above letters

 This is a sentence.

• Note the
– Capital “T” (start of sentence symbol)

– Blank “ ” (word separator)

– Period “.” (end of sentence symbol)

#38

More Lexical Analysis
• Lexical analysis is not trivial. Consider:

How d’you break “this” up?
• Plus, programming languages are typically

more cryptic than English:
*p->f += -.12345e-6

#39

And More Lexical Analysis

• Lexical analyzer divides program text into
“words” or tokens

if x == y then z = 1; else z = 2;

• Broken up:
if, x, ==, y, then, z, =, 1, ;, else, z, =, 2, ;

#40

Parsing

• Once words are understood, the next step
is to understand sentence structure

• Parsing = Diagramming Sentences
– The diagram is a tree

– Often annotated with

additional information

#41

Diagramming a Sentence

This line is a longer sentence

verbarticle noun article adjective noun

subject object

sentence

#42

Parsing Programs

• Parsing program expressions is the same
• Consider:

if x == y then z = 1; else z = 2;
• Diagrammed:

if-then-else

x y z 1 z 2==

assignrelation assign

predicate else-stmtthen-stmt

#43

Semantic Analysis

• Once sentence structure is understood, we
can try to understand “meaning”
– But meaning is too hard for compilers

• Compilers perform limited analysis to catch
inconsistencies: reject bad programs early!

• Some do more analysis to improve the
performance of the program

#44

Semantic Analysis
in English

• Example:
Arya said Sansa left her direwolf at home.

What does “her” refer to? Arya or Sansa?

• Even worse:
No One said No One left her mask at home.

How many “No One”s are there?
Which one left the mask?It's

context-
sensitive!

#45

Semantic Analysis in Programming

• Programming
languages define
strict rules to avoid
such ambiguities

• This C++ code prints
“4”; the inner
definition is used

{
int Sydney = 3;
{

int Sydney = 4;
cout << Sydney;

}
} Scoping or

aliasing
problem.

#47

Optimization

• No strong counterpart in English, but akin to
editing (cf. poems, short stories)

• Automatically modify programs so that they
– Run faster

– Use less memory

– Use less energy (e.g., on your phone)

– In general, conserve some resource

#48

Code Generation

• Produces assembly code (usually)
– which is then assembled into an executable by an

assembler

• A translation into another language
– Analogous to human translation

• (Code generation in PL is not really
analogous to ChatGPT. We'll cover it later!)

#49

Issues
• Compiling and interpreting are

almost this simple, but there
are many pitfalls.

• Example: How are bad programs handled?
• Language design has big impact on compiler

– Determines what is easy and hard to compile

– Course theme: trade-offs in language design

#50

Languages Today

• The overall structure of almost every
compiler & interpreter follows our outline

• The proportions have changed since
FORTRAN
– Early: lexing, parsing most complex, expensive

– Today: optimization dominates all other phases,
lexing and parsing are cheap

– Thus: this course puts no emphasis on ancient
parsing optimizations (e.g., LL, LALR)

#51

Trends in Languages

• Optimization for speed is less interesting. But:
– scientific programs
– advanced processors (Digital Signal Processors,

advanced speculative architectures)
– small devices where speed = longer battery life

• Ideas we’ll discuss are used for improving code
reliability:
– memory safety
– detecting concurrency errors (data races)
– type safety
– automatic memory management
– …

#52

Why Study Prog. Languages?

• Prepare for many good jobs
• Increase capacity of expression
• Improve understanding of program behavior

– Know how things work “under the hood”

• Increase ability to learn new languages
• Learn to build a large and reliable system
• See many basic CS concepts at work
• Computers are the only tools that increase

cognitive power, so learn to control them

#53

What Will You Do In This Class?

• Reading (textbook, videos, outside sources)
• Learn about different kinds of languages

– Imperative vs. Functional vs. Object-Oriented

– Static typing vs. Dynamic typing

– etc.

• Gain exposure to new languages (ML, Cool)

• Write an interpreter!

#54

What Is This?

#55

The Rosetta Stone
• The first programming assignment

involves writing the same simple

(50-75 line) program in two languages:

– Ocaml and Cool (with Ruby, Python,
JavaScript, Haskell and C as Extra Credit)

• PA1c, due Tue Jan 30, requires you to write the
program in one language

• PA1, due subsequent Thursday, requires both
Long, long be my heart with such memories fill'd!
Like the vase in which roses have once been distill'd:
You may break, you may shatter the vase if you will,
But the scent of the roses will hang round it still.

- Thomas Moore (Irish poet, 1779-1852)

#56

Partial Automated Grading
• You should think about the project on your

own, write your own (local) test cases, and
then submit to the grading server
– Limited submissions per day

– Discourages “guess and check”

• Continuous Integration Testing, Alpha & Beta Testing

• Ecological Validity

• Job Interviews (LeetCode, HackerRank, etc.)

• Grade and Time Control

#57

Live Submission Demo

• Let's visit the automated submission website

#58

Start The Homework Now

• We can help you! (Also: video guides …)

#59

Homework
• Scott Book reading (for Tuesday)
• Get started on PA1c (due in 7 days)

Questions?

	Programming Language Design and Implementation
	Slide 2
	Cunning Plan
	Course Home Page
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Course Structure
	Slide 26
	Academic Honesty
	The Course Project
	Slide 29
	How are Languages Implemented?
	(Short) History of High-Level Languages
	FORTRAN I
	Slide 33
	Slide 34
	Slide 35
	The Structure of an Interpreter
	Lexical Analysis
	More Lexical Analysis
	And More Lexical Analysis
	Parsing
	Diagramming a Sentence
	Parsing Programs
	Semantic Analysis
	Semantic Analysis in English
	Semantic Analysis in Programming
	More Semantic Analysis
	Optimization
	Code Generation
	Issues
	Languages Today
	Trends in Languages
	Why Study Prog. Languages?
	What Will You Do In This Class?
	What Is This?
	The Rosetta Stone
	Slide 56
	Slide 57
	Slide 58
	Homework

